PROGRAMMING HITACHL

MANUAL
EM-ITSERIES

NJI098(X)

USING THIS MANUAL

Intreduction

This manual describes the E M-Il Series Programmable Controller. This manual tells how to install, program,
operate, and maintain your programmable controller.

Formore information on the HITACHI product line refer to the publications listed under additional information.
Manual Contents
@ Chapter 1 - Principle of PC

@ Chapter 2 - Input/Output and Numbers
® Chapter 3 - Programming

PROGRAMMING
MANUAL
EM-IISERIES

TABLE OF CONTENTS

1. | PRINCIPILE OF PC |

PC Configuration -eeeeeererrioreirmonnniiini 2
Processing System «oreecrereieriiemii, 4
PC Program «eooeeereecrieremimtmeriimmneniai.. 8
Programming NOtES ceevrrcnreiienienianiiinnaan, 11

l INPUT/OUTPUT AND NUMBERS

External Inputs (X) and
External Outputs (Y)

Internal Outputs (M) -erermeeeenees

Timer (T)

Counter (C) ...

Instruction Words and 1/O Numbers -----ereeeee 40

Arithmetic Register ~eroeevevvrimeeiin. 47
PROGRAMMING

Basic INStrUCHIONS «rreerrererverrniriaciresireruaraneanns 49
ORG, ORG NOT, OUT, OUT NOT -rveeevrens 51
AND, AND NOT wevervrmseeorersnnsenmsineennns 53
OR, OR NOT weeverveeerremmineseineesincerinsens 55
STR, STR NOT, OR STR, AND STR «+veveot 57
Application Example ««-eeeeereeeeerniannininn, 61

Application Instructions (1) ceeerervremennennnins 67
Start and End coeereevrrrreneneiiiians 70
Edge ... 73
Set, RESBE vveverrrrererrraiinrtetctioriiiiinnaienons 75
Step ProceSs «rerrererrrsrreserirnerrnriinniainanes 77

Master Control ~eeeeveereiriiiniiiiiiiiinns 84

Jump .. 87
Up/down Counter «roeeveeriiemmicinieiiinnn. 92
Branch and Return e-eecererreseemersmreeneanes 95
LatCh seeresreernetoimeaniiiiariisoniiniiiiiiniiiinies 97
Shift Register «reverereserivioneinii 100
NOP cerveeeeeeererertaateeeeeteneeieeaeeereaneinnne 102
Arithmetic Instructions ~-reereverrmereeeieneniiann, 105
Concept of Arithmetic Insturuction -+« 110
Load sereerrerscireiitiiiiiniiiiiiiiiiesiiiinennanaes 112
QUL +reveermrrmmennmnnnmmnnnmienansaeaeeeeaenaaeeeenens 116
Add vverereeemenimnreennrn s 129
SUDTIACE «ervererereremrnriieii i, 124
Multiply -- ..126
Divide -+ 128
Logic .. 130
COMPAre ererereeriimmininii 133
Carry Output «ereeeermeeeen 136
CONVEIt +orvererrrrerieiiiiriaiiieiieaineraens 137
SRIFE cveerreerereumenmenmmmmnnreneniannineaeaannenas 143
Mask reeeeereereeriiiniiiiiiiiiiiiiiiiiia 145
Exchange .. 147
Distribute/Extract 149
Application Instructions (1) -weereeeerenenee 151
1/0 Refresh creerereeeininin 153
INterrupt ceeveeereeiiieie 155
SUDFOULING cerevererrareraerineaainiinnerenanns 157

PRINCIPLE OF PC

INPUT/OUTPUT AND NUMBERS

3.1 Basic Instructions

3.2 Application Instructions (I)

PROGRAMMING

3.3 Arithmetic Instructions

3.4 Application Instructions (ll)

. : Processing Programming
PC Configuration System PC Program Notes
2] 4 | 8 11

Programming device

8B

o000
{
¢
¢

e
e es

DC24V
Program memory
(EEPROM)

'

|
| I
 —
O o_
I
T >
—0 ©
Input

cpy

:

222

i circuit
—0

Image memory
of each input
and output

External input device :

Programmable controller (PC)

Output)
circuit 1221
N 7
—
e

i External Output device

[Explanation]

1. The programmable controller (PC) consists of CPU, program memory, image memory of each input and
output, input circuit, output circuit and power supply.

(1)

@

The CPU is composed of a microprocessor which excutes logic and arithmetic operations, and the system
software which controls PC itself.

The program memory is used to store a user-defined sequence program (ladder diagram). Program is
to be generated by using the exclusive programming device or personnal computer.

In the E/EM series, EEPROM is used for program, so a stored program will not be lost after the PC power
supply is turned off. The program can be modified easily if necessary.

The image memory of each component contains data including ON/OFF status of input/output and
current value of timer/counter. These data change along with program execution.

The input circuit composes an interface to the external input devices (such as pushbutton switches, limit
switches and proximity switches). It is electrically isolated by photocouplers.

The output circuit composes an interface to the external output devices (such as electromagnetic
contactors, valves and lamps).

. . Processing Programming
iguration PC Program
PC Configuratio System | g Notes
2 4] 8 | 11
Explanation of processing system
(XooX1 . Step Codin
; ep L b
—J“E[_' l @ 000 ORG X0 -+
0ol OR_ MA0D Creli
X2 M50 X3 00z |AND X! é[::cc t
}_‘ 003 OUT M400 ution
/—\\’/

(A): Input Processing
(B): Output Processing

Ny

Program Processing

Qe

Program Processing

Image memory

i)

ON _/OFF
status of

external input

Image memory

U

External output

Scan time

A

[Explanation]

1.

Scan time

The PC sequentially executes the written program (stored program) from its first step to the last step, then
returns to the first step again and repeats the operation (cyclic execution). The duration of a single cycle
of this operation is called the scan time.

Input operation

The ON/OFF status of external input is fetched in the image memory. Even if the ON/OFF status of
external input changes during program execution, the input status in the image memory remains un-
changed. The status change can be read only during input processing for the next scan. So an input
signal can be fetched only when its duration is longer than the time for a single scan. For fetching an input
signal with a shorter duration than above, external interruption input or refresh instruction is usable.

Cannot be fetched

-~ NG

,
\ -
-] Lo G |
Input signal < 0 N/ L N
Program | Program Program |
Bl A %xecutlon BiA %xecution Bl A execution BlA

4

Scan time 1
w

Program execution

A program runs sequentially from its start step (step 0000) to the last step according to the written
instructions. The status of external output, internal output, etc. changes sequentially on the image
memory along with program processing.

[Example]

Step
000

M400

X3

X

G

Cyclic
execution

4, Output processing
The ON/OFF status of external output on the image memory is sent to the output circuit.

5. 1/0 batch processing

Reading the status of all external input signals at the beginning of a scan and outputting the resulting
signals to an external device at the end of this scan is called 1/0 batch precessing. (Some PC's use direct
processing in which the external inputs are read sequentially and the result is output to the external device
also sequentially.)

I/0 batch processing does not cause a change in the ON/OFF status of external input and output during
a scan. This makes the timing check on a program easy. Therefore, this system is widely used on
small-scale PCs. The EM-1I employs this system.

6. Peripheral processing

Peripheral processing (communication) with programming
device, etc) is to be made for only 1ms during the time
T T between program execution and input processing.

Peripheral A: Input processing
processing B: Output processing

Program
> BiA execution

=3}
=
L~

. . Processing ' . Programming
PC Configuration - PC Program
g System : stam Notes
2 { 4 8 | 11
Code list
X1 X2 T
D T e
| Instructionword | [-
OR Y 220
AND NOT X2
ouT Y 220
Instruction | = g‘g‘r‘g‘a“m + 1,70 No X, Y and M’mpresentihg 1/0
. classification cannot be keyed
<ey in numeral (s) alone.
1-word instruction| = 1 step --- Basic instruction, etc.
Instruction
gi-(\))‘;l(,)rgtc. instruc-| 2 steps ... Arithmetic instruction, etc.

[Explanation]

1. Instruction
(1) An instruction is a combination of an instruction word (basic instruction, application instruction or
arithmetic instruction) and the 1/0 number (external input, external output, internal output, timer, counter,
constant or the like). Some instruction words do not require an 1/0 number.

T 1

Instruction word /O No

(2) A single word occupies one step.
There are two kinds of instructions; one-word (16-bit) instruction and two-word (32-bit) instruction.
Because the capacity of standard EM- || program memory is 3,997 words,up to 3,997 one-word instruc-
tions are programmable.
2. 1/0 number

A code representing the 1/0 classification is prefixed to each I/O number.

[/0 classification - T]
1/0 o [1/0. classification code] |

v
X: External input

Y: External output .
so they need not be keyed in when using a programmer.
M: Internal output

These can be identified by 1/0 number,

T/C: Timer, counter

No code: Constant, number of jump, etc.

The 1/0 number is determined by the assignment table (described later) so that numbers used for X, Y and
M are not used twice, and the 1/0 classification (X, Y and M) need not be keyed in when using a
programmer. However, X, Y and M are written in this manual so that the reader can easily recognize the
1/0 classification in the sequence program.

— 10 —

. . Processing Programmmg
PC Configuration System PC Program Note
L 2 [4 I 8
Bad Good

M990: Always ON

Permanently @~ — H@“
connected coil
' X0
Contacts at X0 XI .._..;Hﬁ_‘ -—-I }—“")_*%_@‘
right of coil r ‘
Shlft leftward
X0 X1

X0 X1
e G- — D
e i X2 X4
Bridge circuit X 2 }___i |
4

0l

X3 X2 X1

— l-[l o
X4
X5 X6 X5 X6
Double coil circuit [| ‘“ @ — F— .

X7

X 7 @_ —

U

— 11 —

[Explanation]

1.

Permanently connected coil

An output coil cannot be connected directly to the left bus. It must be connected via the contacts of special

internal output (M990) which are always closed.

Contacts at right of coil

Although the contacts of thermal relay are connected at the right of output coil in the relay sequence, it is

unallowable in the PC sequence. In case such a connection is required, the contacts must be connected at

the left of the coil.

Bridge circuit

Vertical disposition of any contacts cannot be programmed. So connect the contacts in the horizontal

direction.

Double coil

Do not use the same output coil more than once, otherwise a double coil error (E. display) will be detected
during the syntax check. However, operation will continue

X 0 even if a double coil error occurs, and the output signal of the
] ~— second coil will be used in the subsequent steps.
OFF
NOTE

Coil following the FUNO2 (IF) or FUN;3 (IFR) is not
treated as a double coil error.

The second
coil is given
- operational
priority,

X1
G

- 12 —

5. Restrictions on number of serial and parallel contacts

Up to 9 contact sets

A
Up to 26 Linesj

l
!

I

A A

(1) For entering a program with the portable graphic programmer (PGM-GPE2), the number of contact sets
is restricted to 9 on each of 26 lines at maximum.

{2) For printing out data using the universal programmer (PRGMJ-R2), the number of contact sets is
restricted to 8 on each of 26 lines at maximum.

(3) Although there is no restriction imposed in either vertical or horizontal direction when using the standard
programmer (PGMJ) or universal programmer (PGMJ-R2), it is recommended to avoid using contacts
beyond 8 sets on each line and beyond 26 lines in consideration of (1) and (2) above.

Q ; k, Whatusthed:fferencebetween the ?Cf.and ,reléy,,,ba‘nel?{ .

The PC is more compact, has higher performance and more flexibility and is easier to operate"
than a relay panel.

— 13 —

Item

System |

Relay system

'PC control

Function

Complicated control is enabled by using
many relays.

Control can respond to any complication
through programming.

Modification of
control data

Impossible except by rewiring.

Possible freely through program
modification.

No problem in normal use. However, poor

Highly reliable because semiconductors

Reliability contact may occur and the servise life is are used in key components,
limited
. . i Usable for any control through
Universality Complete device serves for only ‘ y g
one purpose. programming.
System

expandability

Difficult because modification is required.

Freely expandable within capacity.

Ease
of maintenance

Periodic maintenance and replacement
of service parts are required.

Repair is possible inside each unit .

Neces§ary Popular, widely known, simple and easy Programming software rules must be
technical to understand learned.
understanding

Equipment size

Usually large

Remains compact for even complicated
and sophisticated control

Design and
manufacturing
periods

Many drawings must be prepared, and a
long time is needed for arranging parts
and performing assembly test.

Design is easy even for complicated control. Manu-
facture can be completed in a shorter time period.
Hardware is usable for general purposes (ready-
made products).

Sign: O Very good

A Good X Poor

1 PRINCIPLE OF PC

3.1 Basic Instructions

3.2 Application Instructions (I)

3 | PROGRAMMING

3.3 Arithmetic Instructions

3.4 Application Instructions (Il)

— 15 —

External in- Instruction Arithmetic
puts(X), exter- lntterntz;I(M) Timer(T) |Counter(C) |words and register
nal outputs(Y) | OUtpU 1,70 numbers
16 18 | 27 [36 40 f 47
L — L
C 1 External input (X) CO @—
| e
LTJ Dca4av || * L[_‘
i / X 00 X0l T00 ST
oo (o7 A G e e——(9
3 / /
' i S S — / / 1
g ; M400 / @
o— 01 —{ / O O 221
- @ Extemal output (Y) //
B / '
M400 /
External } @‘ 5 o—z22
i'rllg:st de- ! External
output de-
/_\ vice
QSO/ —O O 223 K
External | Output
‘l input relays pe] terminal
Input terminal - -

— 16 —

[Explanation]

1. External input (X)
Input sensors, such as limit switches, pushbutton switches, proximity switches and photoelectric switches
are external input devices of the PC. They are connected to the input terminals of the PC and drive the
external input relay (X) in the PC.
(The ON/OFF status of each external input device is fetched in the image memory.)
External input relay is referred to as an external input (X) hereinafter. The external input (X) has many
normally open contacts (“a'’ contacts) and normally closed contacts ("'b”" contacts). They are used for
generating the sequence in the PC.
2. External output (Y)
Electromagnetic contactors, valves, indicator lamps, etc. , are external output devices of the PC. These
devices are connected to the PC output terminals and driven via the contacts of external output relays in
the PC. External output relay is referred to as an external output (Y) hereinafter.
The external output (Y) also has many normally open contacts (“a’ contacts)and normally closed contacts
("b") contacts). They are used for generating the sequence in the PC.
3. 1/0 number assignment
1/0 numbers are assigned according to the slot position of base (BSM-3 to 9). When mounting an input
module in slot 0 in the example below, input numbers X00 to X15 are assigned, and output numbers Y220
to 235 are assigned when mounting an output module in slot 1 in the same example.
Input Power CPU XSOO XSEO X540 XSSO XS8O Q Pow?r X?SOO XEEO ><240 xgso XgBO
[X] |sueply X165 | X35 | XB5 | X756 | X9 SUPPY | X116 | X136 | X185 | X175 | X195
Slot 0 Slot1 Slot2 Slot3 Slot4 Slot 5 Slot 6 Slot7 Slot8 Slot9
Output | Power CPU Y%OO Y%EO Y%IIO Y%GO Y?SSO Q Power YBSOO Y 320 Y%ZIO Y?BO YBS’SO
[Y] |supply Y215 | Y235 | v285 | Y275 | Y295 SUPPLY | v 315 | vass | vass | v37s | vags

— 17 —

Instruction

External in- Arithmetic
puts(X), exter- Intterntal py | Timer(T) Counter(C) |words and register
nal outputs(Y) | Outputs(M) 1,0 numbers
16 | 18] 27] 36 | 40 | 47
X01 X02 o5
[e M400 - nteralontout 0 | M400 to M655 (256 point
—#_l ! A O——‘ Ifﬁf)‘f:arle"t‘gﬁ?f\%’ Contentos are lo<st W}Eeor:npf))wer goes OFF.
M400
X0l X0z . M700 to M955 (256)
I 0 t
—’1! /‘H/ @— I[nrtgtne‘?ft?%%m (W Contents are retamelc)ioxlarzlhzn power goes OFF.
M700
__..1 l,_u
Power OFF
X01 T

M400

When composmg a self holdmg cxrcmt for retentlv
_ internal output (M?O to M955)
keep rela . ~

M700

Memory con-
tents retained
when power
goes OFF

— 18 —

[Explanation]

1.

The internal output (M) is equivalent to an auxiliary relay in relay sequence. It has many normally open
contacts ("a" contacts) and norlally closed contacts (b’ contacts). They are used for generating an
internal PC sequence.

There are two kinds of internal outputs (M) ;

non-retentive (memory cleared to zero because of status change from power OFF to ON, stop to run or run
to stop) and retentive (memory not cleared to zero regardiess of status change from power OFF to ON, stop
to run or run to stop). This is discriminated in |/0 number.

When composing a self-holding circuit for retentive internal output (M700 to M955), it is usable as a keep
relay.

Internal outputs with special function (M960 through M991)

There are special internal outputs which function as a clock or a flag for a failure. Table 2-3 details the
functions of each special intemnal output.

—_19 —

Table 2-1 shows how the external input (X), external output (Y), internal output (M) and timer/counter (T/
C)) are assigned.

Table 2-1 Assignment of 1/0 Numbers (1/2)

Number cho
Classification Remarks
Slot Input:module | Output module S G L
0 X 0~X 15 Y 200~ Y 215 3
o Decimal numbers
L X 20~X 35 Y220~Y235 | o Numbers 0 to 15 are assigned when mounting a 16-point
External input 2 X 40~ X 55 Y 240~ Y 255 input module in slot 0.
(160 points) 3 Y 60~ X 75 Y260~ v 275 | © Numbers 200 to 215 are assigned when mounting a 16
-point output module in slot 0.
or 4 X 80~X 95 Y280~ Y295 | 5 Numbers 8 to 15 are omitted when mounting an 8-point
5 X100~ X115 Y 300~ Y 315 module.
external output 5 X120~ X 135 Y 320~ Y 335 o For assignment of special modules, refer to Section 8.
(160 points) 7 X140~ X155 | Y340~ Y355
8 X160~ X175 Y 360~ Y 375
9 X180~ X195 Y 380~ Y 395
Non-retentive memory o Decimal numbers ‘
at power failure M400~ M655 o Each number has a data capacity of 8 bits.
(256 points) M400|{ bz [bes | bs | bs [bs {b2 | by [be
M401|bs |bs |bs | bs [ba ib2 by | by
Retenti{x{e‘lmemory at o The bit handling instruction determines ON/OFF status of b7.
f}'zltteru“ta] power 1al ur.e M700~ M955 O The word handling instruction handles 8-bit data of M400 and
P (256 points) that of M401, 16 bits in total, when No. 400 is designated.
Special function M960—~ M991 o All bit data
(32 points) ’ o o Detailed in Table 3-3.

— 20 —

Table 2-1 Assignment of 1/0 Numbers (2/2)

Number
Classification o s e i - Remarks
: Slot Input module | Outpat module
Coil , O Decimal numbers
Timer chitacts /¢ 0~T/C 9 O Timer and counter share the same number.
o Up-timer and up-counter, respectively
and O 100 is added to timer/counter number (2-digit) for re-
counter Current - o presenting a current value, and 200 is added for indicating
value I'/C 100~7T/C 195
preset value.
(96 points in total) O States of coil and contacts are shown by bit data.
O Current value and preset value are of 16 bit data.
Preset T/C 200~T/C 295
value

Table 2-2 lists each range of constent and argument used in instrucctions such as AJMP and MODE.

Classification

Range

Table 2-2 Each Ra

nge of Constant and Argument

Remarks

Constant

0000 H ~9999 H

The hexadecimal code H is not suffixed at the time of program entry.
(Example) FUNO. 1234 (1234H—AR)

Word constant

0 ~FFFF

This constant is designated in a decimal number because the pro-
grammer does not have keys A to F which are indispensable for
hexadecimal designation. Entry is possible in up to 3 digits.
Effective range of decimal constant: 0 to 999
(Example) FUNS51 427 (AR+1ABH — AR)
(Decimal 427 =hexadecimal 1ABH)

Byte constant

00 ~FF

This constant is also designated in a decimal number because the
programmer does not have keys A to F which are indispensable for
hexadecimal designation.
Effective range of decimal constant: 0 to 255
(Example) FUN50 255 (FFH - ARL)
(Decimal 255=hexadecimal FFH)

No. of bits

0~255

Used for FUN72 and FUN73.
(Example) FUN72 5 (AR is masked by 5 bits from the left.)

Argument

0~63

Used as an argument of FUN08 (AJMP), FUN09 (AJEND), FUN42
(CALL), FUN43 (SB), FUN93 (INT) and FUN97 (MODE).
(Example) FUNO8 63 (AJMP63)

—20

M960

All outputs OFF

Table 2-3 Function of Special Internal Output (1/4)

When M960 is switched ON by the program, all external output signals go OFF except for
the RUN contacts.

-]

O Suppose that an error program is written. (The
X0 and X1 are not closed simultaneously during
normal operation.) As a result, M 960 is swit-
ched ON. In this status, the PC judges that
there is a system error and it switches all
output signals OFF.

However, program operation does not stop.
oEliminate the cause of the error and turn on power supply again.

M961

Initializing re-

tentive memory

OlIn the sysytem shown in the figure, retentive
memory is or is not initialized depending on
whether X0 is ON or OFF at the start of opera-
tion.

XO:ON:--e Retentive memory is initialized
when power is switched ON.

XO:.0FF------ Retentive memory is not initialized
when power is switched ON.

ORetentive memory is initialized only at the
start of operation. During operation, it is not
initialized even if M961 is switched ON.

OMB961 coil operates only when it is written in
step 4. It is invalid when it is weitten in any
other step.

— 23

Table 2-3 Function of Special Internal Qutput (2/4)

o i,fDescriptio11 L

M962 Cyclic oscillation T T 1 i o t: P.eriod of one scan (scan time)
Signal goed ON/OFF alternately for each scan.
M 96: -
Ma63 0.1 sec clock M b
“0.05sec o1 0.5'sec .
sec
M964 1 sec clock '::»{_*._sec" l::"——*—t—-\
M965 10 sec clock Mj(}s_——-—-‘I W
5 gec Jose 30sec 1 mi
C in
M 966 1 min clock l::_——b‘———bl l:_—__—"‘——’l
M969 10 ms clock 5ms 10ms
) r Start of operation To initialize all volatile memories at the start of
M67 ON for a single ﬂ operation, use M967 in combination with M961.
scan after start To initialize memory individually, use M967
of operation "l)
One scan alone.
ﬂ—‘ t: Scan time
Mo68 1000-scan cycle S I P ON once every 1,000 scans.

1000 X 1 Used for measuring scan time.

24 —

Table 2-3 Function of Special Internal Output (3/4)

Descriptio

If system error occurs (when ERR lamp comes on), an error code within 0 to 65535 is
WM970 System error factor displayed. Details are given number system Error codes in section 7. The code
cannot be cleared by turning on power supply again.

Program counter at oc- . Lo
WM972 If system error, occurs, count on the program counter of microprocessor is displayed.
currence of system error

Designation of read ad-
WM974 | dress at occurrence of

system error .
4 1f system error occurs, data at the address designated by WM 974 is presented in M976.

Data readout at occur-

M976
rence of system error

Registration of system
Mg77 ROM sum System ROM sum appears in WM978 only when this 1/0 is ON upon turning on power
supply.

WM978 System ROM sum

Systm attribute appears in each bit of b7 to b5. Bits b4 to b0 are undefined.

Bit At0 AUl

M98g System attribute by CPM-E2 CPM-E3 Used for hardware
be 9600bps 4800bps check
bs | RUN instruction valid | RUN instruction invalid

55

Table 2-3 Function of Special Internal Output (4/4)

If syntax error is detected in the check specified by a peripheral or in the check before

W M980 Syntax error factor start of operation, an error code within 0 to 65535 is displayed.
The code cannot be cleared by turning on power supply again.
The latest scan time is indicated in steps of 10 ms, though the first scan is shown as
W Mo82 3 G 65535 ms.
can time Indication contains an error of +10 ms.
Unit is millisecond (ms). (Indicated as 0, 10, 20, ms------)
Of scan times after the start of operation, the maximum time is displayed in steps of
i Max. scan time 10 ms, though the first scan is shown as 0 ms.
WMoss ' ! Indication contains an error of +10 ms.
Unit is millisecond (ms). (Indicated as 0, 10, 20, ms------)
M990 Normally ON Always ON irrespective of run/stop status.
M991 ON during run ON during run and OFF during stop

M986 through M988 are for functional expansion and unused (undefined) by the system.

26 —

External

uts(X), exter-
gal o(u’?puts(Y) outputs(M)

" Internal

. Instruction ; i
Timer(T) | Counter(C) wordsand | Arithmetic

/0 numbers register

16

[18 I e

vy

Timers: T/C00 to T/C95 (96 points shared with counter)

X0

B s (D ey

- [
- 5 sec
-

T/C00 -7

G

Coding,

ORG X0

OUT T coo.5 | (1 Write a decimal point (.) before
’ the preset value.

ORG T/ C00 <2>“TV/V€S€ the 1/0 classification code

oOuUT Y 220

. Time lapse is fetched
__in incremental mode.

 Timer contacts close when the current
- time valie reaches the preset value.

—27 —

[Explanation]

1. Kinds of timer
(1) On-delay timers are used. In the above sequence, the timer coil T/COO is excited when input X0 turns
ON. After 5sec, the timer contacts close. There are many timers with "'a"” and "'b"" contacts. They are
used for generating a sequence in the PC.
(2) The same data area is shared by timers and counters, a total of 96 points (T/CO0 throuh T/C85). A
number used for a counter cannot be used for a timer.
2. Key input of timer
For specifying a timer coil using the programmer, enter the timer number (1 or 2 digits), a decimal point
(.) as a separator and the preset value in this order.

‘ ouUT I Timer No. ll Preset value
L Decimal point for separating timer number and preset value

1/0 classification number must not be omitted.

— 28 —

3. Time base

The timers have two time bases: 0.01 and 0.1 sec.
key-in method.

Time base is automatically selected according to the

Time base

I&ey in method

| ou ﬂ 1/¢|| Timer NOTDED

 Preset value range

63.5sec T/ C 0~ 9+0.1~999 9sec

0.1sec 1~99.
—- — T /C10~95-- 0.1~99.9sec

E)Ulj‘ Timer No. ‘ Y 1~999sec

[—
770.0sec
- .) -
vorsee | Lo]| omer o Lo T][5 TC 0ms5e0.01~0.09
0.55sec (settable only in 3 digits)

4. Preset value

Up to 10 timers/counters (T/CO to T/C9) can be set using 4 digits (except for the timer adopting 0.01 sec
time base which must be set using 3 digits).

Up to 86 timers/counters (T/C10 to T/C95) can be set using 3 digits.

— 29 —

5. Current value
Each timer operates in the incremental mode. It starts timing when the timer coil is energized. When the

current valuue reaches the present value, the timer contacts close.
When the timer coil is deenergized, the current value is reset to 0.

Timer coil [

Current value

Preset value

et} g

Timer contacts

,, ;Vtth'rhed,:k Off
| Gombosed,

— 30 —

[Example]

i

Power failure) Restart of operation

T

X0

]

.. 7= (Memory-pro-
' o 7 tected internal
output)

M700

300 sec

Current !

value ' 130sec ! { - 170seé '
|
T/C00 | ' -

contacts

— 31 —

6. Contacts operation timing and accuracy

[Example]

e

T/C 10
—

~—MT(JO .
iiic 10 .

A

10sec

M500

1 scan

1 scan

b

H

-]

1

T/C10 coil !
M401
M400

The clock starts when the timer coil is energized (time point (b)). When the coil instruction is executed after
time-up the output contacts close.

' ‘ Timer starts by other than external input signal Timér starts 'by external input sigﬁal.
Co?ditiOK] Timer contacts | Timer contacts | Timer contacts | Timer contacts
(a) before coil (b) after coil (a) before coil (b) after coil
Input fethg:h
oy |2 seams | lscan | delay Gmen | Same asieft +

+2 scans

—32 —

Total timer accuracy

Preset time +2 scans
- time base (0.01 sec
or 0.1 sec)

7. Handling timer preset value and current value in arithmetic instructions in application
The preset value of a timer can be changed by using the thumbwheel

o [Ol[0] _ [91[ch
=l ElE
Th}lmbwheel :2_] l
switch —— = [=
[OfIo] O]
7-segment

LED indicator | &

(with decoder)

FUN20 X0
FUN21 T/C210

——

FUN10 T/C110
FUN22 Y220

switch, and the current value of a timer can be read on the 7-segment

LED indicator.

An example of program is shown below. The table

below lists the number assignment when using the timer preset value

and current value in the arithmetic operation.

Segment | Assignment N o
Current ~ . Add 100 to timer coils T/C00
value T, C100~T ,C195 to T/C95.
Preset N Add 200 to timer coils T/C00
value T./C200~T /C295 to T/C95. /

X0 through X15(thumbwheel switch data) - AR

AR — timer T/C preset value

(T/C 210 programmed for preset value)

Current value of T/C10 timer —» AR

(T/C110 programmed for current value)
AR—>Y220~Y235

The timer preset
value can be chan-
ged by using the
thumbwheel swi-
tch.

The timer current
value isread on the
indicator.

— 33 —

The timer preset value and current value are data to be processed in blocks of 16 bits as shown below.

Preset value and
current value

0.1 sec timer

Indicates 264.5 sec.

''''' BCD 4 digits

The least significant digit représents 0.1 sec order.

0.01 sec timer

b s bo
F 0 5 5
\—-—._——__v-.___—/

Indicates 0.55 sec.

~~~~~~ BCD 3 digits
The most significant digit stands for "F” (0.01 sec timer).
The least significant dight represents 0.01 sec order.

— 34 —



A

The memory device (EEPROM) of the E series does not require a battery. So it is easy to
maintain.

The EEPROM does not require battery backup for program. Hence, program will not be lost because of the
end of useful life or abnormal discharge of a battery, and there is no need for tiresome battery replacement.
Despite being a ROM, the EEPROM allows a program to be written and erased electrically like a RAM

without using a ROM writer or UV eraser.
Compare the EEPROM with the already popular RAM and EPROM for an easier understanding.

EEPROM

Cae?e‘gf,fg;if;e“ Cg;;g’iiﬁgi‘fyed Intermediate | Battery unnecessary
EPROM ROM writer necessary | UV eraser required High Battery unnecessary
Can be written | Can be erased
RAM electrically electrically Low Battery necessary

35



Instruction

External in- Internal . .
puts(X), exter- Timer(T Arithmetic
| 16 ] 18 [ 77 ] s = m =

Counter: T/C00 through T/C95(selectable to function as timer or counter, total of 96)

Count input

— T/C20,
_' 500 times

Reset input

xo JLL=—JL L JL

T/C20 IJ—-’J

current
value .
500 times N
B g
Y221 et

;L/{ c20 - 5

X0
S T X1
o u T, C20.500
0O R T, C20
U Y 221

code "T/C”

Remarks

(1)The reset input is given in the

form of STR instruction.

(2)Place a decimal point(.)before
the preset value.

(3)Use the I/0O claasification

Current valte isincremented.

_ Thé counter contacts close when the cux
1ent value reaches the preset value o

— 36 —




[Explanation]

1. Kind of counter
(1) An up-counter is used. In the above sequence, the counter T/C20 counts ON/OFF cycles of input XO.
When the count reaches 500, the counter contacts close.
The counters can provided with any number of "’ and "'b” contacts.
They are used for generating sequences in PC.
(2) Timers and counters share the same data area. There are 96 timers/counters in total (T/COO0 through
T/C95).
Once a T/C number is assigned to a timer, it cannot be reused for a counter.
(3) When the reset input turns ON, the counter is reset and the current to O.
2. Counter key input
(1) Program the count input and reset input in this order. Reset input must be programmed by an STR
instruction.
(2) A counter preset value can be entered in the same way as for a timer.

[ ouT ! LCounter No.—l D [ Preset valg’

T t— Decimal point separating the counter number and preset value.
1/0 classification code must not be omitted.

— 37 —



3. Preset value

Up to 10 timers/counters (T/CO to T/C9) can be set using 4 digits.
Up to 86 timers/counters (T/C10 to T/C35) can be set using 3 digits.

4, Current value

The current value of each counter is incremented by 1 (one) whenever the count input turns from OFF to
ON. The counter contacts close when the current value reaches the preset value.

When the reset input turns ON, the current value is reset to 0.

The current value of the counter is retained in memory even if power in turned OFF.

[Example]
X0
T/C20,
X1 500 times
H
Mg67

— 38 —

If the retentive data is unnecessary, use the special internal
output M967, which turns on a single scan at start of opera-
tion. Program as shown at left.



Handling the counter preset value and current value in the arithmetic instructions.
When using a combination of counter preset value and current value in arithmetic instructions, the current

value must be equal to the counter coil number (T/CO throuh 95) incremented by 100, namely T/C100, to

T/C195. The preset vaiue must be equal to the coil number incremented by 200, namely T/C200 to T/
C295. '

The counter preset value and current value are 16-bit data (4-digit BCD value) and processed as shown in
the table below.

T/C100 through T/C19%5

(equal to counter bis bo
c | coil numbers T/
urrent value CO0 to T/C95 in- 31 4] 56 | 4-digit BCD
cremented by
100) \ /

v
Indicates 3456 times.

T/C200 through T/C295

{equal to counter
Preset value %%ﬂtg u%})&gg ’11;]/
cremented by
200)

— 39 —



External in-
puts(X), exter-
nal outputs(Y)

Internal
outputs(M)

Timer(T) | Counter(C) |wori

16 I

18

27 ] 36

Instruction can be in the form of bits, words and bit data handled as words.

1. Bit-type operating instruction

[Example]

X10

X0 X1
0
e

5 sec

——ﬂ—— FUNOO M500

e 40 —

A bit-type operating instruction affects only a single set of contracts (via
coil) as shown in the figure.
The basic instructions are all bit-type instructions.



2. Word-type operating instruction
[Example]

M500

I FuNo. 1234

Aword-type operating insturction handles
16 bits as one word.

Constant 1234H — AR

F UN21 WM510 AR - WMS10
[_—_1 I 2 1—‘“2——]
[oJofo[1]oTo MOIOI lllllollfofﬂ:>MsloUolo]1 ofo1]0]
bis rb—l:“S—r—lt—b% WM510
Ms11 [oJo[1]1]o] 1] 0] 0]
br bo

—_—41 —



(1) In the above circuit, the constant 1234H is stored in the AR (arithmetic register) by “FUNO. 1234.”
The AR data is output to the 16 bits of M510 and M511 by FUN21 WM510.”
(2) When an internal output number is specified by a word-type operating instruction, it is handled as 16-bit

[Example]

MSB (most significant bit)
MSlOgoo1001o
MSLL R T ol 1 [ 1 %] 1] o] o
M512

b7 bs bs bs bz bz br bo

WM510
(bis~ bs)

(b7~ bo)

LSB (least significant bit)

data in the following way. The 8-bit data
of the specified internal output (M510 in
the above example) is taken as b8
through b15, while that of the next inter-
nal output (M511) Is taken as b0 through
b7.

(3) The timer and counter preset values, current values and constants (O000H to 9999H) are all 16-bit data.
So they are directly processed as a word when specifying their numbers by a word-type operating

instruction.

— 4D



3. Handling of bit-type data as a word

[Example]
M500

SE

FUN 22 VM 400

FUN 20 X0

An instruction that treats 16 one-bit data
(X0 to X15) as a single word is called a
“word-type instruction for bit data.”’

X0~X15 ——— AR

AR ——o M400~M4l5

(1) In the above sequence, the 16-bit data of X0 through X15 is stored in the AR by the “"FUNO20 X0
instruction, and the data in the AR is output to M400 to M415 by the "FUN22 M400" instruction.

(2) When external I/0 or internal output number is specified by a word-type instruction for bit data, only the
most significant bit (b7) of the 16 points (namely, 16 bits) starting from the specified No. (X0 and M400
in the above example) is handled as a single-word data.

— 43 —



/ Bit data in word configuration

X0 b7f be| bs | bs|balbe|bi|bo

X1 b7# be| bs | ba bz b2 |bi]bo

X15 §b7d bs bs by bi be bi  bo

Example of external input (Word con-
figuration remains the same in case of
external output and internal output.)

(3} Word-type instructions for bit data are used for connecting the thumbwheel switch,etc. as an external
input device for storing BCD data.
They are also used to output data in the AR to an external output terminal. (See the section “Handling
of the timer preset value and current value by arithmetic instructions.”’)

— 44 —



4. Summary of instructions
[Example]
( Bit-type operation {operation on bit b7 of each number)

b7 bs bs bs bz bz b1 bo

M499
M500
M501
M502
M503
M504
M505
M506
M507
M508
M509
M510f bisf bis| bisi biz| by | bio|bo | bs Ja~Word-type operation (WM510) (16-bit
M5114 b7 d bs | bs [ bs | ba [ bai{bi | bo operation using b0 through b15)

M512
Mb513
M514
M515

{— Word-type operation using bit data
(VM500)
(b7 of M500 through M515)

— 45 —



(1) Internal outputs are all 8 bits long.
In word-type operation, a total of 16 bits in the specified internal output number and the next number are
handled. This data is given an element code WM. WM510 in the above example consists of M510 and
M511 (bO to b15).

{2) In the word-type operation using bit data, the most significant bit (b7) of sixteen 8-bit data starting from
the specified number is handled as a single-word data.
This word data is made up of the 16 bits in the verticcal direction. Hence it is given an element code

VM.

— 46 —



External in-

Internal i Instruction
puts(X), exter- tputs(M) Timer(T) | Counter(C) |words and
nal outputs(Y) | OUtpUTS 1,70 numbers

L 16 I 18 [ 27 | 3 20
b is bs by bo
{r A R H AR L
bis bsg by bo
ER F E R H l ER 1
e Y4
16 bits
b7 bo
o
CR 010 0 ’ 0 010 , 0 Acec
L“ Carry foag (C)
___{ FUNI0O T.C180 Current value of AR

FUN7. 5000

FUN 23 M500

T/C80

(A R &5000)—

C R—M500

¢

— 47 —



[Explanation]

1. The registers of EM-|| series come in 4 kinds below.
(1) AR: Arithmetic Register used for instructions. It has a 16-bit configuration.
(2) ER: Expansion Register used for storing upper word resulting from multiplication and remainder of
division. It has a 16-bit cofiguration.
(3) CR: Carry Register. Carry flag (C) turns to "1, for example when the condition for comparison is
satisfied. Bits b0 to b6 are always "'0.”
{4) Acc: 1-bit register which automatically changes along with execution of a basic instruction such as ORG
or AND.
2. Datainthe AR, ER and CR are cleared every time scan starts and they change in response to the processing
of arithmetic instructions.

— 48 —



1 | PRINCIPLE OF PC

L

2 |INPUT/OUTPUT AND NUMBERS

. 3] Basmlnstructlons .

3.2 Application Instructions (1)

3.3 Arithmetic Instructions

3 PROGRAMMING

. | 3.4 Application Instructions (1)

— 49 —



Table 3-1 Basic Instructions

. 8 iChange In register:
. L . o - L Bemnaan Refer:
Instruction Symbol ‘ Function . QQDO@&n; - yg % IAR|ER]| C [Ace 16)3?;0
ORG }——-1 '— Connection of normally open contacts (“a” contacts) to bus 1 ole o || 5]
X, Y, M, T/C0~95
ORG NOT }——Hﬁ_ Connection of normally closed contacts (“b” contacts) to bus 1 elo o0 1] 5]

STR }-—«—{ b— Start of branching normally open contacts (*a” contacts) XYM 1 o @ /l0 1 57
STR NOT }"‘7H/—- Start open branching normally closed contacts (“b” contacts) T/C 0~T/C95 1 ®le o 1| 57
AND | Serial connection of normally open contacts (“a” contacts) XY, M 1 oo /o 1| 53
AND NOT % Serial connection of normally closed contacts (“b” contacts) T/C 0~T/CY 1 olejle 1| 53
OR Parallel connection of normally open contacts {(“a” contacts) XY, M 1 oo 0| ! 55
OR NOT Parallel connection of normally closed contacts (“b” contacts) T/C0~T/C95 1 @0 o ]| 55
AND STR Seria] Connection of logic block 1 lelo e 1| 57
None
OR STR Parallel connection of logic block 1 oo e 1|57
ouT ~O~{ Output of calculati it Y. M (withpresetvalue)| 1 | o] e | 0| o | 51
Wi reset valu
utput of calculation resu T/C 0~T/C% pi
OUT NOT ‘C}_’ Inverted output of calculation result Y, M 1 ©olole|le| 5]

e 50—

©: Register remains unchanged.
1: Register changes.



AND
AND NOT

STR OR STR
STR NOT AND STR

Examples

57

ange inregister

tructio
o ER|C i
Cohnection ofﬁnormally’ open con- T
ORG l’_{ — Origin tacts (“a” contacts) to bus . ML
l — Connection of normally closed con X.Y.M,T/C0~95
R T igi 44y, 7 :
ORG NOT Inverted origin tacts (“b” contacts) to bus ) °ojeie ]
- . Y, M .
OuUt _Q‘{ Output Output of calculation result . with pre- oo o|e
T/CO~T /C95 | set value
OUT NOT “G“{ Inverted output | Inverted output of calculation result | Y, M ©lo |0 0
e Remarks
X0 .
. ORG X0 Qutput in connection
ouUT Y 220 with bus
X1 ORG NOT X1
/H/ M400 ouT M 400
ouT T/Co Tmier (coil)
L U50 Tmier (preset value)
5()sec ORG X 2
X2 OUT NOT M 401 Inverted output
i wiaon
Element codes X Y and
M need not be keyed in.

e BT




[Explanation]

1. The ORG and ORG NOT instructions are used for the contact next to the bus (at the head of circuit).
The OUT instruction drives each coil of external output (Y), internal output (M), timer (T) and counter (C).
This instruction is not used for external input (X). The OUT NOT instruction is used for inverted output.

3. More than one OUT instruction (multiple outputs) can be used in parallel.

4. A preset value (constant) is required after an OUT instruction for a timer or counter coil.

Lovr] [rve] [0 ] OTL;H o JLs JLo ]

Coil number of timer [ndicates the next  Preset value (constant)
or counter deta is a constant. (

50 sec for timer )
50 times for counter

After OUT instruction, the element number of timer/counter coil (T/C00 through T/C95), period *'. "' for
indicating a constant and preset value must be entered in this order. This occupies a single step.

— 52 —



ORG, ORG NOT

OUT, OUTNOT | AND NOT | OR NOT

AND

OR
STR

STR

OR STR
NOT AND STR

Examples

51 T 55 | 57 | 61
o ; i - .8 [Change in register
. Instruction | Symbol Meaning _ Function Component 28 e
n , ; : ; SEIARIER| € [ane
5 Serial connection of normally
AND _I }_ And open contacts (“a” contacts) X, Y, M Liejeie
AND NOT| —H Inverted and | gprial onhection of normally T/C 0~T/C95 1lelelolt
i o Code Remarks
AND AND NOT
X0 X1 X2 ORG X 0
l' % /I(JI/ <Y220> — AND X 1 | Serial contacts
AND NOT X 2 | Serial contacts
ouT Y 220
X0
ORG X0
X1
F @ 0Ou 1 M 400 4
AND X 1 | Serial contacts
ouUT M401 | Cascaded output
A

Element codes X, Y and
M need not be keyed in.

— B3 —




[Explanation]

1. The AND and AND NOT instructions are used for connecting a single set of contacts in series to the existing
circuit.

2. Driving another coil via a contact set after OUT instruction is called a cascaded output (M400 and M401
in the figure above). Cascaded output can be repeated any number of times.

NOTE
It is recommended not to use more than 8 contact sets horizontally nor more than 26 lines vertically in a
circuit, although the number of series contacts and cascaded outputs is not limited. This is because of
functional restrictions on the portable graphic programmer (PGM-GPEZ2) and printer.

— 54 —



ORG, ORG NOT AND
OUT, OUT NOT | AND NOT

STR  OR STR
STR NOT AND STR | Examples

L 51 l 53 57 ] 61 ]

Parallel connection of normally
open contacts (“a” contacts)

OR NOT I —H#T | Inverted or et gopnection, of normally T/C 0~T/C95 ’ 1lelelelt
ORG X0
Parallel
O R X1 connection
ouT M410
X2 M410
I I (v o)
ml T Y225 ORG X2
X3 OR X3 :] Parallel
=l AND M410 connec-
tion
>f . OR NOT X4
_ ) <
U ouUT Y 225




[Explanation]

The OR and OR NOT instructions establish a parallel connection of a contact set to the existing circuits.

To connect a serial circuit block consisting of two or more serially connected contact sets (——{ ]——{ I——) in
parallel with another circuit, use the OR STR instruction explained later.

— 56 —



ORG, ORGNOT |  AND OR [ SR ORSIR [,
OUT, OUTNOT | AND NOT | OR NOT | STRNOT AND STR | Examples

51 l 53 r 55 l e e

Meaning . | . Function Component ;zg .
Start of branching normally
Store open contacts (“a” contacts) XY, M 1
Start of branching normally ~ . i
STR NOT —— Inverse of store closed contacts ("b” contacts) I/C 0~T/C95 llo]oje|}
TR T
AND STR ;tj i IJJ.' And store Serial connection of logic block llejloe o}
HH! i
P —— None
: - ;
OR STR S Or store Parallel connection of logic block Ljojle e}
o L o




Block “a”

T/C 10

Y 225

500 times

ORG

AND
STR
AND NOT
OR STR
ouT
ORG

OR NOT
STR NOT
OR

AND STR
ouUT
ORG
STR
OUT T/C

X0
X1
X2

X3

Y 225
X4
X5
X6

X7

Y 226
X10
X11

10

500

« Block “a”is
programmed.

!
J
l . Block “b”is
J programmed,

a -+ b « Blocks “a”
and “b” are
combined by
OR STR.

» Block “c” is
programmed.

« Block “d” is
programmed.

[ S N

@

c-d - Blocks “c
and “d” are
combined
by AND
STR.

— B8 —




[Explanation]

1. Acircuit with two or more contact sets connected in series is called a serial circuit block.

When connecting

series circuit blocks in parallel, use the STR or STR NOT instruction to begin the branch, and the OR STR
instruction to end the branch.

2. A circuit with two or more contact sets connected in parallel is called a parallel circuit block.

When

connecting parallel circuit blocks in series,use the STR or STR NOT instruction to begin the branch,and the
AND STR instruction to end the branch.
3. The circuit shown below can be programmed according to either coding example (1) or (2).

X0 X1

—
X2 X3
—F—F—

X4 X5

i

, Coding example (1) ’

ORG X0
AND X1

STR X2
AND XS:I
OR STR

STR X4

AND XSJ
OR STR
ouUT M400

O

’ Coding example (Zj

ORG X0
AND X1
STR X2
AND X3 .
STR X4 2 levels of nesting.
AND xsj . .
OR STR
OR STR
OuUT M400

VAN

— 59 —



(1) Even when many parallel blocks are to be used, each circuit block is connectable to the previous one by
specifying the OR STR instruction. The number of connections is not limited. (See coding example (1))

(2) The OR STR instruction can be used in the batch mode. [n this case, however, the number of interations
of the STR (STR NOT) instruction is limited to 7 times (up to 7 levels of nesting). (See coding example
2.)

(3) The same rule applies to the AND STR instruction as well.

4) 1f the STR or STR NOT is not used in correct combination with AND STR (or OR STR), it is detected as
a syntax error.

4. The STR or STR NOT instruction does not correspond to the AND STR (or OR STR) instruction if the
counter, up/down counter, shift register or similar circuit has two or more input conditions.

X0

]
"'Tl]“— Shift
Ea

X0
___{ }_ A
Up/down

X1
] }_‘ counter
X2
i

Counter

AL
Ak

— 60 —




ORG, ORG NOT AND OR STR OR STR
OUT, OUT NOT | AND NOT | OR NOT | STR NOT AND STR

[ 51 | 53 [ 55 I 57

. Program

Circuit| . Configuration Explanation .

. [Instruction code

» First the parallel circuit

- ORG X 0
2 X0 X1 X2 X3 of block “a” and then the
© Y220| @ AND X1 serial circuit of block “b”
gﬂj OR Y220 are programmed.

%

£ AND X 2

= Block “a” Block “b”

g e ol AND NOT| X 3

&

ouT Y 220

+ The circuit is divided into
blocks “a” and “b” which

ORG X0

M e —— |

= AND NOT| X1 are programmed sepa-

2 X0 X1 X2 X3 rately.

3 A () STR X 2

= Y 220 AND X 3

5 —— !

o X4

=3 OR Y 220

: = =

= : OR X 4

5 Block “a:L_BIock “b” |

2 < : ] AND STR a-b - Blocks “a” and “b” are

combined by AND STR.

ouUT Y 220

— 81 —



Serial-to-parallel circuit

Block “bl”

X0 X1 X2 X3

X4Y 220
Block “b2”

Block “a” | Block “b”

ORG NOT

AND
STR
AND NOT
STR NOT
AND
OR STR
AND STR
OUT

X0
X1
X 2
X3
X 4

Y 220

Y 220

bl+ b2

. Block “a” is programmed.

« Block “bl” is program-
med.

» Block “b2” is program-
med.

» Blocks “bl” and “b2” are
combined by OR STR.

« Blocks “a” and “b” are
combined by AND STR.

— 62 —



Serial connection of parallel circuits

Block “al”  Block “bl”
fot——enfp]
X0 X1 X4 X5
—
X2 X3 X6 X7
ik h
1A% 1
Block “a2”  Block “b2”
p—— }4——~—-»{
Block “a” Block “b”

AND
STR
AND NOT
OR STR
STR NOT
AND
STR
AND
OR STR
AND STR
ouT

E T -
ot

Y 220

al+b2

b1

bl-+b2

« First block "al” and then
block ”a2” are program-
med.

« These blocks are com-
bined. by OR STR.

+ Blocks “bl” and “b2” are
programmed in the same
way as above.

+ Blocks “a” and “b” are
combined by AND STR.

— 63 —



Circuit/  Configuration
ORG M400
M400 T00
.y @ AND NOT T/C 00
0 ~ OR X0 X
£ o ouT M400 ,
3] 0 Sec 2sec
£ i (oo) .
; 1T \ 5 sec ORG M400
2|5 M400 T 00 ’ :
E g 1 o) @ oOuUT T/C 00.002 YM r——'f
bl o { Al \_/
GRS ORG Md00
=~
2 AND NOT T/C 00
o
) ouT Y 220
g
by ORG X0
=
2 o M (o) AND NOT | M400
< — o 100
5o sec OUT T/C | 00.100 X0 BT =
£|E M40 '
&k i L —— O ORG Moo | x1 | o
L X1 90 X 100sec
g — }——————— times STR X1 TOO feof |-7mmmm---- i
= ~
g T00 OUT T/C |60.090| (g %
£ ' Y ~ |
g 60 = ORG T/C 00 V990 T
L
£ it \ 220 ouUT M400
&
ORG T/C 60
ouUT Y 220

— 64 —




Circuit

. Program

. Cohﬁguratibn , - Explanation
e  Instnctioncode | Data ' '
ORG X0
X0 @ OUT T/C | 00.010
E .—”’—ﬂ@ ORG vaso | X0 A [
o Y220 Xp AND NOT | Xo 100 l .
= } ! TOl .
-8 oA Ssec OUT T/C |ol.005] O /o
=S e
EE T00 Tol ORG T/C 0| Yoz | ,
g E @ 10sec 5sec
S8 v 290 . OR Y 220
w
~_§ ' AND NOT T/C 01
(=)
s ouUT Y 220
Q
5 o Tol —~ ORG X0
(=] O -
§ - —T0) AND NOT T/C o| *— " '
z Isec Too | ol oL
&1 E o0 OUT T/C |00.001 ’ :
(o}
5 - rol ORG T/C o0 | o ] ! |
o} 3sec
Z out T/¢ |onos| 2 |l T
& [
@ ourT Y 220 lsec 3sec

— 65 —







PRINCIPLE OF PC

INPUT/OUTPUT AND NUMBERS

3.1 Basic Instructions

| 3.3 Arithmetic Instructions

| 3.4 Application Instructions (Il

— 67 —



Application Instructions (1) (1/2)

Instruction | Symbol | Name |

Detects rising edge ( _§ )of signal

FUNOO| DIF Rising edge M 73
Edge
FUNOl| DFN | Trailing edge |Detects trailing edge ( §__)of signal. M 73
FUNO2 IF If Set/reset 75
Stepprocess None
FUNO3| 1FR If reset Step process 77
Master | F UNO04} MCS Master Sets common serial contacts. N 84
one
control | yyNos| MCR control Releases common serial contacts. 84
FUNOB| JMP | yymp without | Skip program up to corresponding N 87
. one
FUNo7| JEND | @addressing | yEND 87
Jump
FUNOB| AJMP Jump with Jumps to AJEND at corresponding (A ddress No. 87
FUNO9| AJEND addressing address number. (O to 63) 87
FUN28 |[BRANCH Branch Stores Acc. None 95
Branch
FUNZ29 | RETURN Return Returns stored Acc. None 95
Up/down Up/down
counter FUN40| UDC counter Up/down counter V M (Note) 92
NOP FUN4l| NOP | No operation | Nothing occurs. None 102
Latch FUN45| LATCH Latch Resetting priority latch M 97

— B8 —




Cofotion | Ins

Shift | ¢ uNar

SFR

_ Name

Shift register 16-bit shift register VM©Note) | 1 |e @ |0 |0 100

register
cerana [ FUNS] SET [ s | v || felele]
et | FuNso| RES Reset a‘;l‘gf Xfcfcciosngog‘;?t Y, M |[1|le|e|e|e]| 75
Start and| FUN98| STA Start Operation start cntrol None 1lele lele 70
end FUN99] END End Returns program to initial step. None 1= = =] - 70

®: Register remains unchanged

1: Register changed
—: Register cleared

(Note) VM represents vertical 16 bits.
In the example below, VM is made
up of 16 most significant bits of M400
throgh M415.

M400 b7 § bs | bs | bsa bz | b2 | b1 |bo

b7 § be [ bs | bs ] b3 [ b2 | by | bo

M401

M415 kb7 B bs [ bs [ ba | ba | bz | bt | bo

LV M400

— 69 —



Set and|Step | Master Up/ | Branch Shift
Edge reset | process| control Jump ggn’l?ter ?:tc::rn Latch register NOP
73 75 | 17 ] %4 87 92 95 97 100 102 |

FUN9S8

STA

Operation start control

None

FUN99

END

Returns program to initial step.

None

Step
000

X0 M990 el
b FUN 98

Program A

FUN 99

NS

Program

B

Returns to initial step.

— 70 —



[Explanation]

1. Start circuit
Operation start input is to be specified through a program. This means that start circuit must be written
at the head of any program. (There is no restriction on number.)

Start Start o )
Step input 1 input 2 Condition for operation
000 ——F~——— FUN 98

("‘,H/_ (“b” contacts) specifiable)

Example of start circuit Always at ON
N
X20 M990 M990 M990
f—-db— FUN 98 poodb— FUN 98

M990: Special internal output
always turned on

(a) Operation starts with external (b) Operation starts when
input X20 at ON and stops at OFF. turning on supply.

—_71 —



2. End

(1)

—72

The FUNSS instruction is not required usually. However, it is recommended to insert this instruction for
separating programs at the time of test run since operation can be checked more easily. Program is
executed from step 000 to FUN99 instruction.

Once operation has been confirmed, delete the FUN99 instruction.

After completely clearing a program, all user memories are written with the FUN99 instruction (through
indication is not provided).

Since the FUN99 instruction is assumed in an area not yet programmed, there is no need for writing that
instruction at the end of a program.



__ |Setand|Step | Master Up/ | Branch Shift
; reset | process | control Jump ggt‘mer ?gt(ilrn Latch register NOP
5 | 7 T 8 [ s T 92 | e | 97 ] 100 102

} FUN 01 M401

FUNOO

M400

ORG

X0

FUNO1 M401

FUNOO DIF Rising edge Detects rising edge (_f7) of signal. M 1lo|o|oloe
FUNO1 DFN Trailing edge Detects trailing edge (T1__) of signal. M 11e oo e
X0 Code . Remarks
N FUN 00 Moo . 5 ...
ORG X0

Detects rising
edge.

Detects trailing
edge.

t: one (1) scan time

g t:}‘-

—73 —




[Explanation]
1.

The FUNOOQ (DIF) instruction is used to detect the rising edge of an input signal (status change from LOW

to HIGH), and the FUNO1 (DFN) instruction is used to detect the trailing edge of the signal (status change

from HIGH to LOW).

These instructions are programmed in combination with an internal output (M) so

that the specified internal output (M) turns on only for 1 scan time when the edge is detected. Any number
of FUNOO and FUNO1 instructions can be used (so far as internal output permits).

The edge detect instructions are executed according to the input change after operation start.

Rising edge is not detected and M400 does not turn on when X0 is
already turned on at start of operation.

3. The edge detect function is effective for word LOAD, COMPARE and the like instructions, because they can

be executed only when input condition changes.

X0
]

(For instance, this function is used as a startup condition of
arithmetic instructions.)

M400

—

FUN 00 M 400
FUN 20 X20
FUN 21 T/C200

— 74 —




Start
and end

Up/ Branch :

Master Shift

Jump |down |and Latch |2 NOP
control P counter | return register

Set/reset

FUNS88

SET

Set Turns on component when Acc is at ON,

Y, M 1 |e

FUN89

RES

Reset Turns off component when Acc is a

t ON.

Y, M 1 e

X0 o
Xo © Timing chart

© Code

] b FuNo2

0

FUNoz 0

ORG X0
FUNo2
ouUT Y220

RG X1

FUN02

UT NOT Y220

X0
| — © Code
ORG X0
FUN8SS | Y20
ORG X1
X1 FUN89 ¥ 220

—_ 75 —



[Explanation]

1. Instructions FUNO2 and OUT are combined and used as the SET instruction.
Instructions FUNO2 and OUT NOT are combined and used as the RESET instruction.
OON status is held under SET input and OFF status is held under RESET input.
o Any other program may be inserted between SET coil and RESET coil. The program written last is given
the highest priority.
OA keep relay can be composed when combining a FUNO2 instruction with the memory-protected internal
output.
2. FUNSS8 is the SET instruction. It provides the same function as a combination of the FUNO2 and OUT
instructions.
FUNB8O is the RESET instruction. It provides the same function as a combination of the FUNO2 and OUT
NOT instructions.
Each of FUNSS and FUNS89 instructions requires fewer words than the corresponding combination of
instructions.
If an output coil is programmed using both FUN88 and FUNB89 instructions, a syntax error (double coil error
E. ) occurs, but operation is continuable.

— 76 —



Up/ Branch :
Start Shift
and end| Edge ggm]ter ?gt(ilrn Latch register NOP
| 0 73 | 92 [ %5 T o 100 102 |

FUNO3

. Instruction |

If reset

Step process

Ma67

M402 X2

M401

FUNO3

L

FUNO3

FUNo3

Output

Ma0o

M402

Y221

© Status transition diagram

M400
(initial)

X0+
Mdo1 @
(step a)
{ Outbﬁf"in
xi Gl

M402
(step b)

@ Code

ORG
STR
AND

OR STR

STR
FUN 03
our
ORG
AND
STR
FUN 03
ouT
ouT

ORG
AND
STR
FUN 03
ouT
ouT

Mo67
M402
X2

M401

M400
M400

X0
M402

M401
Y220

M401
X1
M400

M402
Y2zl

—_T77 —



[Explanation]

1. FUNOS3 is the step process (sequential control) instruction. Set input and reset input are provided. A step
process program can be created in the regular format using the status transition diagram.

M400
(initial step)

+—X0

M401
(step “a”)

|
| Cusot)
FUNO3
RESET @

T—X1

M402
(step “b™)

Status transition diagram

—78 —



Explanation of operation

(1) 1If step condition X0 is set to ON in the initial step (M400),
step “a” (M401) turns ON and Y220 is output.

(2) Y200 holds its output even when step condition X0 is set to
OFF.

(3} When step condition X1 is set to ON, step “b” turns ON and
Y220 is set to OFF.

{4) Even when step éondition X1 is set to ON in the initial step
(M400), step “b” (402) won't turn ON. All steps are executed

in correct sequence.

 Progromming method

(1) To program a FUNO03 SET input, the internal out-
put (M400) specifying the previous step is ANDed with
the condition for stepping (X0) .

(2) For FUNO3 RESET input, the internal output
(M402) specifying the next step is programmed.

(3) After FUNO3 the internal output (M401) specifying

the current step and output (Y220) are programmed.

—_T79 —




— 80 —

|

Selective branch and join ]

SEL
condition

condition
for selec: &

for selec-
tive join

RESET.

tive
branch

Line (a) <

FUNO3

X0 M40o

M402

_{

FUNO3

X1 M401

M403

—

FUNO3

X2 M402

———

M400

FUNO3




®

X4 M400
M411 FUNO3
X5 M410
—
M412 FUNO3
X6 M411
Line (b) 4 f—{ b—od ]
M400 FUNO3

(1) Upon start If operation,step M400 (initial status) turns ON.

(2) When input X0 turns ON, line (a) is executed. When input
X4 turns ON, line (b} is executed. Line (a) or (b) is selected
according to which of inputs X0 and X4 turns ON earlir.

(3) In line (a), steps involving M401, M402 and M403 are
executed in this order. When stepping condition input X3
turns ON, control returns to the step M400,

(4) In line (b), steps involving M410, M411 and M412 are
executed in this sequence. When stepping condition input X7

turns ON, control returns to the step M400.

— 81 —



Parallel ‘branch and join

M400
—+X0
@ i O
( R
E@oz E\E@
—X2 -+ X3
M403 @;@
4 X4
o
—+X5

82

RESET
_condition
for paral-
_lel branch

Line (a) <

FUNO3

M 967

X5  M406

M401

e .
X0 M400
—H——k

{Mdoz Maga)

FUNO3

M401

X Mfl[()l
]

1
— ]
0

M403

FUNO3

M 402

0§ ¢

_|

M403

M406

— ]

FUNO3




Line (b) <

Explanation

(1) Step M400 (intial status) is sit on start of operation.
(2)  When input X0 is turned ON, step 401 turns on.
(3) When input X1 is turned ON, steps 402 and M404 turn ON

simultaneously.Lines (a) and (b) are executed concurrently.

(4) Inline (a), step M403 turns ON when input X2 is turned ON.
(5) Inline (b), step M405 turns ON when input X3 is turned ON.
(6) When input X4 is turned ON with both M403 and M405

activated, the common step M406 turns on. However, the step
M406 won’t turn ON when M403 and M404 are activated in
lines (a) and (b), respectively. Control of lines (a) and (b)
returns to step M400 simultaneously when input X5 is set to
ON.

—

A

X1 M401

M405

FUNO3

X3 M404

FUNO3

7 N\
(X4 Md403 M405 1
pa

Maog ~—

FUNO3

0§ ¢

— 83 —



Maciar U Branch :
Start Edge Set and |Step | Master Jump d(?v{m and Latch Shift NOP
‘ register
and end reset | process chntrqu counter | return egiste
0 [ 7w ] 7w bToea ] s [ %2 ] e [ 97 T w0 [ 102 |
. Instruction | Sy,ri,iboly . Name L ,"'F,unCtion' Comyponen'ty‘
FUNO4 MCS Sets common serial contacts. lje]ojo o0
Master control None
FUNOS MCR Resets common serial contacts. 1 jejio0 e ]|oe
Code-
ORG X0
FUNO4
ORG X1
; AND X2
Ve s:: OR X3
AND NOT M400
ouT M420
¥h :> X10 ORG X10
J_xxg —j( FUN 04 (MCS) ggz("‘ i
5 = X11X12 X13 11 X 12 .
MCS'E>_ r_|}_7|,(_”__._~_‘_ L ey X8 @ AND NOT X12
M4m43x @ _Mj{xomsl @ AND X13
: 4 D“.v ouT M500
M432 M433 M432M433 ORG M::so
F—— AND M431
STR NOT Md32
g‘;’g&' h——‘ FUN 05 (MCR) IL AND M433
X20 X21 X20 X21 oR STR
. OUT M501
i C i @ FUNOS
ORG Xz0
AND X2l
ouT Y 240

— 84 —



[Explanation]

1. The FUNO4 (MCS) and FUNO5 (MCR) instructions are used for setting and resetting the common serial
contacts, respectively. They must always be used as a pair. Otherwise, a syntax error occurs.

2. The FUNO4 instructions must be followed by an ORG (or ORG NOT) instruction.

3. When the master control contacts are open, the subsequent output coil is set to OFF. In the example above,
M420 is unconditionally OFF if input X0 is OFF.

X0
= e [ Funs o
coils For  switchover ' between:
— \@ — Q200 manual and automatic con-
- trols according to-a master
E> FUN 07 =~ control mstrgctgqn,y tahke
care not to use double coils:
X1 X1 If double coils must be used,
“ﬁ FUN O 1 — FUN o6 specify the FUNO6 or
__{ ___4 FUNO7 instruction. Refer

page 65 fo use FUNOG and
FUNO7.

FUN 05 }— FUN 07

INHIBITED (Jump circuit)

— 85 —



4. Any number of master control instructions can be used if they are paired unless nesting.

X0
—H——iFUNm} < e S

X0 X1 X2
X1
= - A
: —
—— | F UNO4 —fe )
— - FuNo < =8 p -
o
>
i =3 <L4—:> Level 3
__H___{ L Equivalent
———{ PN [ O Level 2
———H——{FUNM} < | F UN05 =
m - Level 1

instructions can be nested up to 3 levels. At four levels or more, syntax error will occur.



Start | pyoq |Setand|Step | Master | o E;S"Ch Latch SNt | nop
n r r r i
and end eset | process | control counter | return register
[ 7 1 755 T 77 | e 92 | 9 [ o [ w0 | 12 |
5.g| Change in register
Instruction Symbol Name Function Component sk
Z 2| ARIER| C acc
FUNos JMP Jump without Llele o o
i Skips program till JEND. None
FUNOT JEND addressing ps prog A I I I
FUNos AJMP Jump with Jums to AJEND of corresponding address | Address No.| 2 [ ® [ o | | @
FUNO9 | AJEND addressing | number. (0~63) [ 2]e ool
X0 ORG NOT Xo ORG NOT Xo
° FUN0G — FUNo8 1
3
£ ORG X1 ORG X1
2 OR M4 OR M400
g AND NOT X2 AND NOT X2
2 ouT Y 220 ouT Y 220
<<
. FUNo7 " FUNog 1
X0 ORG X0 Xo ORG X0
Qo
E
= X1 X2 ORG X1 X1 X2 ORG X1
5 F—3f———@20 |anp noT X2 —fF—H———@22)| |anD NOT X2
& ouT Y 220 ouT Y 220
- N

— B7 —



[Explanation]

1. The FUNO6 and FUNO7 instructions specify jump without addressing, while the FUNO8 and FUN 09
instructions specify jump with addressing. These instructions all cause cotrol to jump to JUMP END when
the jump condition is set to ON.

2. When the jump conditions are satisfied, the program lines located between the current address and
destination address are not executed. The output is held in the status before the jump. By using this
function, a manual/auto switching circuit can be composed as illustrated above. [f the same output coil

is programmed between the jump circuits, a syntax error (double coil error E. ) occurs, but operation can
continue.

Manual Auto . Manual
Ll Bt

— 88 —



3. A jump instruction cannot be used between master control instructions.
4. The table below lists differences between the FUNO6/07 instructions and FUN08/09 instructions.
Scan time can be shortened by using the functional combination of FUNO08/09.

Table: Differences between FUN0O6/07 and FUNO8/09 (1/3)

. FUNGOS FEUNO . FUN 05 EUN 09

Jump _]'ump YES
condlt;on condition
ON? ON?

Instuction fet- NO
ched (execu-
tion avoided) / Processing
faster
) Program Program
Method of processing between jump betv%een jump
instruction nstructions is instructions is
executed. executed.
v ¥
Program after Program after
jump end jump end
instruction is instruction is

executed. executed.

— 89 —



Jump method

Table: Differences between FUN06/07 and FUN08/09 (2/3)

o -

)

FUN 07

S

FUN 06

)

FUN 07

A rus e o]
:

H{rure o]
}

__‘

FUN 09 0

e -
)

FUN 08 2

5

FUN 09 1

\

HFUN 09 2

4

— 90 —




Table: Differences between FUNO6/07 and FUN0O8,/09 (3/3)

1. Jump from multiple FUNOS8 instur-
cions to a single FUNO9 instruction is

1. These instructions must always be used allowed.

Jump method as a pair. If not paired, a syntax error will 2. Nesting is allowed at different ad-
oclsur.. . dresses.

2. Nesting is unallowable. 3. Jump to a preceding step is also
posible.

— 91 —



Upy Branch :
Start Ed Set and | Step Master Shift
ge Jump |down Latch |7, NOP
and end reset | process| control counter| return register
[T 1 73 1 75 1 71 | 8 57 [ 92 | | 97 [ w0 [ 102
) ) “6% Change in register
Instruction Symbol Name Function Component 2;— ARIER] C e
FUN40 ubDC Up/down counter| Up/down counter VM 1o | e|o]e
gp/ e
own Remarks
X10 input s
2210 FUN 40 vMs00
X1 Clock ORG X10
X172 Reset STR X1 } TR
" STR X12 Use STR.
: FUN 40 V M500 upc
16b1ts from MSOO to MSloare

— 92 —

, used fm current value reglster

M515

L o

I A 1

Column 4 Column 3 Column 2 Column 1

-+ Indicates the current value of 3214 times (4-digit BCD value).




down

Up/down input

v

Cock —J L L [0 [0 A @ 1

4

Current value
(M500 though 515)

9999

— 93 —




[Explanation]

1. FUN40 (UDC) is the up/down counter instruction. It is to be programmed in combination with an internal
output (VM).

2. 16 bits staring from the coil number specified by that instruction (M500 through M515 in the example
shown above) are used as the current value register of up/down counter. The current value is presented in
BCD 4 digits.

3. The up/down input, clock input and reset input are programmed in that order.

The current value changes at the rising edge of the clock (from OFF to ON). Either UP or DOWN condition
is selected according to the ON or OFF status of up/down input as shown below.

input

! i
Clock _£
Current value _ e =

Up (incremented) Down (decremented)

Up/down ; i

— 04 —



Start | Setand|Step | Master Up/ Shift
dge Jump |down - NOP
and end reset | process | control counter| re register
L [ 73 T 75 T 7 | & [ @& | 92 [ 9 T 9o | 10 | 1 ]
; Instmcuon . ,,Symi)c;l N,‘a'me' 'Cdmbonght k'
FUN28 | BR A NC H’ Branch ’ S’tores”dA;c‘m I None
FUN29 RETURN Return Rturns stored Acc data . None 1 ° ° ° 1

B e TN -

-Im '-—{sz_“.—@ FUN 28 BRANCH
AND X1

No contacts

F
\_”’ RETURN

FUN 29
' AND X2
not be p1o
grammed fo cascaded, out: ouUT a0
\ND FUN 29 BETURN

ouT M402




[Explanation]

1. FUN28 (BRANCH) and FUN29 (RETURN) instructions allow programming of a circuit which

is

incompatible with the cascaded output of AND instruction and the master control instruction.

Cascaded output is
impossible because.
of contacts.

-

Master control is
impossible because
contacts .are not
provided. =

3. The FUN29 (RETURN) instruction is usable any number of times for

a single FUN28 (BRANCH) instruction

X1 X2

X3 X4
W
D
D,

X6

— 96 —

T3

2. The FUN28 (BRANCH) instruction cannot be used more than
once in the same circuit.

For such a circuit below, master control instruction must be
used.

» - a (unallowable)

:>:
;—Q

ouT

FUN 29
AND 6
ouT 403

402

4. Master control instructions is unusable
after FUN28 (BRANCH) instruction.

ORG 1
FUN 28
AND 2
OQUT 400
FUN 29
AND 3
AND 4
ouT 401
FUN 28
AND 5
I



Start Setand|Step | Master Up/ | Branch '
and end Edge reset progess control Jump | down fand «Latchf ?:égter NOP
counter | return |
L 70 73 75 77 84 | 87 [ e [ 95 [ o7 ] 10 | 102 ]
TesmetonShibal U Rl Component L)f b
: ; : ZE G Ace
FUN45 | LATCH Latch Reset priority latch M 1 ° ° ° °
X0 get Code Remarks
FUN45  M700
X1 Reset ORG X0
STR X1 Use STR.
B FUNS v
Set X0 f\—l £ J\ e
Reset X1 7 e I /
M700 il k -

— 97 —



[Explanation]

1. FUNA45 (LATCH) is an edge triggered latch instruction with the reset priority signal. It must be program-
med in combination with an internal output (M).

2. The ON status is set at the rising edge of the set input signal (from OFF to ON). The OFF status is set
when the reset input goes ON.  When the reset input is ON, the set input is rejected. If the set input and
reset input go ON simultaneously, the reset input has a priority.

3. The FUN45 instruction can be combined with a retentive memory internal output (M) to produce the
function of a keep relay.

In the above sequence, the status of M700 at occur-

rence of power interruption is retained till its recovery

]Operation ne foner OFF because M700 is a retentive internal output.
Set Xohm Even when the set input X0 is turned ON at start of
M700 ‘: o o ‘ - operation, edge will not be detected and M700 will not
(retentive internal | . turn ON.

output)

— 98 —



4. The self-holding circuit operates at a specific level (ON or OFF status), but the lath is operated at the signal
edge. This causes the difference shown below.

X0 X1 ; .
olding[ |
Self-holding V700
Set X0

o A
circuit —]‘——j
X0 i
Latch [ FUN 45 — ResetXl:/
circuit X1 M701 M700 T

M701




Up/

Branch

Start Set and|Step | Master Shift
Edge Jump |down |and Latch |05, | NOP
and end reset | process| control counter | return register
70 73 | 75 [ mm [ 84 87 2 | 9 | 9 | 10 102
' o . ,uéw . ”Clia:ngg in register
Instruction | Symbol  Name . Function Component |5 T 7 [ -
FUN47 SFR Shift register 16-bit shift register VM 1 ° ° ° °
X0 , &
N pate FUN 47 VM400 : sl Aumarks
(-
| Clock ORG X0
X2 Reset STR X1
] Use STR.
~ STR X2
[:16 signal bits from M4OOJ FUN 47 Y M400
through M415 are used
as the shift register:
Step|:::Input: timing Register status
M M M M M M M M M M M M M M M M
Data 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
™o |
D P LRI T T T T T I T
B N
@puar | He L T LTI T T LI ] s
o T T T S S IS S SISO IS S SIS S, B g
S } )
o | CH T T T LI T T ]|?

— 100 —



[Explanation]

1. FUNA47 (SFR) is the shift register instruction. It is to be programmed in combination with internal output
(VM).

2. 16 bits (M400 through M415 in the example shown above), from the coil number specified by the FUN47
instruction and higher, are used as the register.

3. When the clock input rises (from OFF to ON), concurrent data input (ON/OFF status) is written in the least
significant bit of the register (M400 in this example). The ON/OFF status of each register is shifted to the
next high-order bit synchronized with the rise of clock input.

4. Data of most significant bit (M415 in this example) may overflow as a result of shift operation. When
connecting two (2) or more shift registers, the latter step (with a larger 1/0 number) must be programmed
first in order to prevent data being lost due to overflow.

M415
FUN 47 VM416 [

X1 The latter step
— must be program-
X2 med first.

— e
X0 3% biti fr&n‘zﬁ\duo
e T — thoug are
)l(l FUN 47 Vad00 used as used as the
shift register.
X2 .

—101—



Up/ Branch

Start Set and | Step Master
and end Edge reset | process| control Jump ggm?ter Eggl n Latch

. ,;Instrdc‘(ionj o

FUN41 NOP NOP No operation

Remarks
NOP NOP NOP FUN4l o
J ” H ; . ORG X0
OR ¥ 1
AND <2
s NOP
vuT Y 220

- 102 —



[Explanation]

1. FUN41 is NOP instruction. This instruction does not cause any execution in its step.
It may be located anywhere in a program.

— 103 —






L

PRINCIPLE OF PC

INPUT/OUTPUT AND NUMBERS

3.1 Basic Instructions

_| 3.2 Application Instructions (I)

3 3 Arlthmetlc Instructlons

- 'ff'r'f:’,;, 3.4 Application Instructions (Il)

— 105 —



Arithmetic Instructions (1/4)

B ] J Changein [
= 0 S | B remister |Refer
& |Instruction|Abbreviation  Name . Bunction B [ Pl lence
gl . <7|ARERCRIAcq page
FUN 0 | LOADI Constant—AR Constant (0000H~9999H) |2 1]e|o|e] 112
FUN10 | LOADW 1/O—AR WX WY WM,T/Cl00~295 |2|1|e|e|e| 112
% [FUN20 | LOADB | Load I/O—AR VX VY, VM, T/C0~95 2 Tlelelel 112
~ ' FUN50 | LBYTI T"byte constant —~ ARy ower | Constant (00~FF) 21 1|e|e|e| 112
FUN60 | BLOAD 1/O—AR, (lower 8 bits) WX WY WM, T/C100~295 |2]1 e|e|e| 112
FUN2L | OUTW AR—1/0 WY, WM, T/C100~ 295 7l olelole| 116
5 [FUNz2 [OUTB Out AR—1/0 VY VM 710 elolo] 116
FUN7L | BOUT AR, —1/0 WY, WM, T/C100~ 295 2o olelol 116
FUN 1 | ADDI AR B+ constant—AR Constant (0000H ~9999H) 2111el1]0]| 122
_ [Foni [app | PP 2 AR B+1/0—AR WXWY WM T/C100~295 |21 | 1] 122
Z | FUNs1 | ABYTI AR +constant—AR Constant (0~ FFFF) 211 el 1o 122
FUN6l | ADBNR | DIN add AR+1/0>AR WX WY WMT/Cl00~295 |2|1]e|1]e] 122
FUN 2 | SUBI AR B—constant—AR Constant (0000H~9999H) |2|1|e|1lo] 124
5 [FoNz [SuB | BOPswbtract AR BI1/05AR WX WY.WMT/Cl00~295 |2|1]e|1]e] 124
et
35 FUN52 | SBYTI AR —constant—AR Constant (0~FFFF) 201 |e|lie] 124
BIN subtract
¥ 'FUN62 | SUBNR AR—1/0—AR WX, WY WM, T/C100~295 |21 e|1|e| 124
FUN 3 | MULI AR B constant—AR Constant (0000H ~9999H) 2111e|1let 126
2 BCD multiply
& [ FUN13 | MUL AR B#1/0—AR WX WY,WMT/Cl00~295 |2|1]e|1]e]| 126
g FUN53 | MBYTI ) AR # constant—AR Constant (0~FFFF) 211111 11e1 126
FUN63 | MUBNR| BIN multiply  ipn /0 AR WX WY WM, T/Cl00~295 [2]1]1|1]e]| 126

— 106 —




Arithmetic Instructions (2/4)

Constant (0000H ~9999H)

o AR B/constant—AR 211 1
¢ | FUN14 | DIV BCDdivide IR B [/0mAR WX,WY,WM,T/C100~295 |2 |1|e|1]e]| 128
g FUN54 | DBYTI BIN divi AR/constant->AR Constant (0~FFFF) 211 11e! 128
FUN64 | DIBNR ivide AR/I/0O—AR WX,WY,WM,T/C100~295 |21 11e] 128
FUN 5 | ANDI AR AND constant—>AR Constant (0000H ~9999H) 201 o|e| 130
FUN15 | AND AND AR AND I/O—AR WX, WY WM, T/C100~295 211 ele 130
FUN55 | BANDI ARL AND constant—AR, Constant (00~FF) 211 oo 130
w | FUN 6 | ORI AR OR constant—>AR Constant (0000H ~9999H) 211 °olo| 130
_%f FUN16 | OR OR AR EOR I/O—AR WX,WY,WM,T/CL00~295 |2|1|e|e|e]| 130
FUNS56 | BORI AR, OR constant—AR, Constant (00~FF) 201 olo| 130
FUN66 | EXOR | Exclusive-OR AR EOR I/O-AR WX WY WM, T/C1100~295 | 211 °ole| 130
FUN85 | WNOT | Logical not AR-AR None 111 oo} 130
FUN 7 | CPEHI AR =z constant-:---- 1-C Constant (0000H ~9999H) AR 1]e] 133
FUN17 | CPEH Compare(z) ARzI/0:+15C WX,WYWM,T/C100~295 |2|e 1]el 133
FUNS57 | BCPHI AR_ = constant------ 1-C Constant (00~FF) 2] I|le| 133
FUN 8 | CPEI AR =constant:«--- 1-C Constant (0000H ~9999H) 210 1]e] 133
% FUN18 | CPE Compare(=) AR=1/0----. 1-C WX, WY WM, T/C100~295 218 1]e] 133
§ FUNS58 | BCPEI AR, =constant----- 1-C Constant (00~FF) 2] 1[e] 133
© FUN 9 | CPLI AR <constant------ 1-C Constant (0000H ~9999H) 2]e Ile| 133
FUN19 | CPL Compare(<) | AR<I/Ow1C WXWY,WM,T/CL00~295 |2[e|o|1|e] 133
FUN59 | BCPLI AR, <constant----- 1-C Constant (00~FF) 210 1{e] 133

-~ 107 —



Arithmetic Instructions (3/4)

: ‘
5 ,
. FUN23 | OUC Out carry C-1/0 Y M lie ° 136
g FUNS83 | CLC clear carry Ce"07 None lie 0 136
© FUN84 | SEC Set carry Ce"1” None lie 1 136
FUN24 | BCD BCD convert BCD convert None 111 I 137
FUN25 | BNR BIN convert BIN convert None 1)1 1 137
5| FUN7A |SEG | Teegment | Decodes ARy, gara into None [1]e]e]o] 139
g FUN75 | ASC ASCII convert | Sopverts AR.. data into ASCILY Nope 1ii]e]e 139
FUN78 | ENCOD | Encode 16 to 4 None 111 1 141
FUN79 | DECOD | Decode 4to 16 None 111 ! 141
FUN26 | LSFR Left shift None 1|1 I 143
o |FUNZ7 [ReFR | Mt Right shift None 1 1]e]1]e] 143
@ | FUN76 | ROL CW rotate None 1| 1]e]1]e] 143
FUN77 | ROR Rotate CCW rotation None 111 1 143
% | FUN72_| MASKL | Left mask Masks @R by specified bits| o955 2/1]e|o|o| 145
= | FUN73 | MASKR | Right mask Masks AR by specified bits| o555 2l1je]e 145
g | FUN80 | SWAP | ARy/AR. ARy=2AR, None 1[1]eofe]| 147
o~
£ | FUN8L | BSWAP ARpu AR AR 2ARL, None 1|1 ° 147
i FUN82 | XCG AR/ER exchange | AR=2ER None 111 ° 147

— 108 —




Arithmetic Instructions (4/4)

k] ‘ Fetche§ data irlto/ AR frdm I 'O
B89 FUN48 Extract address-specified by ER. / None
£% FUN49 | DB Distribute Siiputs data from AR to 1/0 | None ! 1/elol1]e] 149

®: Register remains unchanged

1: Register changed

Note: Although the table above contains entries of constants (00~FF) and (0~FFFF), the programmer is not provided with

A to F keys which are indispensable for specification of hexadecimal constants.

Therefore, specification must be made in decimal constants.

Besides, each constant can be entered in up to 3 digits.
Example: FUNS1 427 AR + 1ABH — AR
(Decimal 427 = hexadecimal 1ABH)

- 109 —



4-rule calculations

Load| out

. . Distribute
Logic Compare| Carry | Convert| Shift | Mask \Exchange ext,;‘d /

Add ft"bt'a'lMu!tiplyDivide

12 | 116 | 122|124 [126 | 128] 130 | 133 | 136 [ 137 | 143 | 145 | 47 | 149 |

FUN 0.1234

FUN 20 M4OOJ

_instructions
in arithmetic
 box are exe
cuted.

[Explanation]

1. Arithmetic instruction is assumed to be contained in the arithmetic box,and consecutive arithmetic

instructions are put in the same arithmetic box. Before each arithmetic box, start condition is to be
provided. When the start condition is satisfied (Acc=1), arithmetic instruction in the arithmetic box is

excuted. This won't occur if the start condition is not satisfied (Acc=0), and the previous status is
retained.

— 110 —



2. For an arithmetic instruction to be executed every scan, it is recommended to use the special internal output
M990 for the start condition since ON status is always secured.

M990
[ 1 FUN 0.1234
1

} ' FUN20 M4oo

3. For an arithmetic instruction to be executed for only one scan at a certain timing, it is recommended to use
the edge instruction as the start condition.

[ FUN 0.123¢
FUN20 M400

— 111 —



Concept of . 4-rule calculations ) ) Distribute/
arithmetic |Load| out i Logic [Compare| Carry | Convert| Shift | Mask |Exchange| ¢ "
instruction Add |3 MuttipyDivide
w0 [ 12 | 116 122124 [126 [128] 130 | 133 | 136 [ 13 [ 143 | 15 | 147 | 149 |
‘ ' ‘ ' 4 | Change in register
Instruction | Abbreviation Name Function . . . . Component S
~ : é AR|ER|CRIAGe
FUNO|LOADI Constant — A R Constant (0000H ~9999H) 213 |ejo|e
FUNIO|LOADW | I/0—>AR WX, WY, WM, T/C100~295 |2 | ¢ el o|®
oa
FUN20| LOADB 1/0>AR VX, VY, VM, T/C0~95]2 |3 |e|o]e
FUNSO| LBYTI 1 byte constant— AR (lower 8 bits)| Constant (00~FF) 21310 oo
FUN6O| BLOAD 1/0-— A Ri(lower 8 bits) WX, WY, WM, T/C100~295 211 oo o

Added
before

constant
———| f————— FUN .o\/ 4321 { Constant}4321H ——= AR
PN 0 % a0 BT in
FUNizo VX < X20~ X35 ——*> AR J Constant 63
FUN ;50 63 { Constant 63 > A R L ' ﬁgmﬁﬁéﬁgg

in AR

FUN 60 WM410

# Malo === I-T=]-Tyf — ARL

112 —



[Explanation]

1. Load instruction loads the word data (16 bits) or byte data (8 bits) to be processed into the AR register.
Five kinds of load instructions FUNO (LOAD1), FUN10 (LOADW), FUN20 (LOADB), FUN50 (LBYT1) and
FUNGO (BLOAD) are selectively usable to suit the component.

AR register

be

FUNO

[

Constant (0000 H ~9999H )

FUNS0

[

(16 bits)

]k

FUNI0

{

Constant { 0 ~255)

-

FUNG60

U T pee—
M Bl

T/C e b

(Current value, preset value)

FUN20

LSO ] EE e (1)
T/Clolzzzrmmmmeeze - - bl

{(Lower 8 bits for current value and present value) )

\.

Xn+15 [bis

Xn b Mn [bo] Yn [bo]

Mn+15 | bis| Yn+1s [bis)

f";B':yté-bfocéss-
Ing (8 bits)

< Word-type
. operation
dsing bit datg

(1) The FUNO (LOAD!I) instruction loads a one-word constant (0000H to 9999H) into the AR register. The
constant must be preceded by a decimal point (.) when keying in.

— 113 —



(2) The FUN1O (LOADW) instruction loads one-word /0 data into the AR register.

@ Internal outputs are used for both bit and byte data (8-bit data for each number). 8 bit data of the
specified internal output (Mn) and the next internal output (Mn+1), 16-bit data in total, are loaded into
the AR register.

MSB

M400 pis|=]=]=|=]=1—=1bs
M401 forj=]mtmtmm ]| ~]b0

LSB

(@ The timer/counter current values (T/C100 to T/C195) and preset values (T/C200 to T/C295) are
4-digit BCD (16bits) data. The counter preset value and current value are loaded into the AR register
without change. However, the timer value is processed as shown below before loaded into the AR

One 16-bit word consisting of data from M400 and M401 is used.

register.

— CAUTION
Timer data |EUUN10| AR register

123 seC ———p> 1 2 3 0

ssvm— (F[5 [ 1]

(3) The FUNG60O (BLOAD) instruction loads 1-byte (8-bit) I/O data into the lower 8 bits (AR,) of AR register.
The upper 8 bits (ARy) of AR register remain unchanged. The FUNG60 instruction is used to load the
external input of 8-bit analog module.

"The upper>
. most-digit
_ E indicates

+

M500 ﬁ”[ “““““““““ lb"l 8-bit data of the specified number is processed.
MSB LSB

—114—



(4) The FUN20 (LOADB) instruction loads 16 |/0 data simultaneously into the AR register. 16 data from
the specified number and upward are loaded into the AR register.

O
Thumbwheel

switch F

B == The FUNZ20 instruction is

used to load data from the
thumbwheel switch in this

instance.
FUN X0[]LSB
20
X15 X0 L ]
PC bo| ¢+——
Y 235 Y 220
X15[JMSB

(5) The FUNS5O (LBYT1) instruction loads a described bit pattern into the AR register.
The E-series programmers (PGMJ and PGM-R2) do not have keys A through F required for hexadecimal
notation. However, when a decimal constant (0 to 255) is specified by the FUN5SOQ instruction,it is
handled as a one-byte data (O0OH to FFH) and loaded into the lower 8 bits (AR,) of the AR register. In
this case, the upper 8 bits (ARy) of the same register remain unchanged. When used in combination with
the FUNB8O instruction, the FUN5SO instruction is capable of loading a desired bit pattern into the upper
8 bits (ARy).

— 115 —



Concept of | A-rule calculations . . Distribute
arithmetic | Load| out o Logic (Compare| Carry | Convert| Shift | Mask Exchange| o0t /
instruction , | Add 2" MultiplyDivide
[T [ 12 ] 122 {124 [ 126 | 128 | | 133 ] [ 137 | 143 | 145 | 147 | 149
, ; 21 Change in register
e o B -
I ion | Abbreviation!  Name 2 L
el L (S |ARIER|CR Ace
FUN21| OUTW AR—1/0 WY, WM, T/C100~295 2| eje|oe
FUN7L|{BOUT Out ARL—1/0(8 bits ) WY, WM, T/C100~295 oo oo
FUN22|{ OUTB AR—1/0 VY, VM 20 6 oo
‘ M400 Ty ;
— H N Blmm e 4
FUN 21 WM400 AR M40l (b7 [mmmmm oo oo m b
I
FUN 71 WMS500 < ARL —— M500 [R] o o
i
FUN 22 VY 200

<,F AR —» Y200~ Y215

— 116 —



[Explanat

1. OUT instruction outputs data in the AR register to the destination component.

ion]

instructions below are selectively usable so as to meet the component.

AR register

bis

(16 bits)

MSB
Mn [ 37 I be
Mnat Jbijmmeamcee bu

LSB
T/C IblB] ———————————————————— l bu]
(Current value, preset value)

MSB LSB 1
Mn [l)7| ———————————— ]iﬂ
By o [ ]

(lower 8 bits for current value and preset value) ]

LSB [e]Mn [ba] Yn
Yn+is

MSB Mn+15
__

Three kinds of QUT

" Word-type:
operation
(16 bits)

Byte
processing
(8 Dbits)

Word:type
operation with
bit data

— 117 —



(1) The FUN21 (QUTW) instruction outputs data in the AR register to the 16-bit area made up of the
specified internal output (Mn) and the next internal output (Mn+1). This instruction is also used for
outputting AR register data to current value (T/C100 through T/C195) or preset value (T/C200 to T/
C295) of timer/counter.

(2) The FUN71 (BOUT) instruction outputs the lower 8-bit data (AR.) of AR register to the specified internal
output (Mn). This instruction is used for analog output when the analog 1/0 module is mounted.

3) The FUN22 (OUTB) instruction is used to output AR register data to the numerical display (7-segment
LED).

— 118 —



[Application example of LOAD and OUT instructions]

1. Explanation of operations

Thumbwheel
switch

Truth table of thumbwheel switch

~ o101 [0lloh
== ==
BE
== =15
[CI}(SY IR (o]
X15 X0
pPC
Y 235 Y 220
\ v 3 \‘
[x] Ix] [ [x]
0| e oo oL
Vo

Display unit with decoder circuit

(example)

Switch
ferminal| 8 4 2 1
PCterminal | X 31 X 2 X 1[X 0
X7]X6|X5|X4
Digit X11 | X10| X 9/ X 8
X15] X14 | X13| X12
0
1 []
2 [
Thum 3 [ [
bwheel 4 [
switch 5 © )
dial 6 d °
7 ® [ [)
8 [
9 [ [

Indicates
terminal
wiring.

® 0N

— 119 —



Truth table of display unit with decoder circuit

Tisp]
terminall D | Cc | B | A
pPC Y 223|Y 2221 Y 221]Y 220
terminal 7557 ¥ 596 |V 225 | Y 224
Digit Y 2311Y 230 | Y 229 | Y 228
Y 235 | Y 234 | Y 233 | ¥ 232
)
1 (]
2 [
Numerical 3 had °
4 ®
. . 5 @ L]
displ t
1 p ay uni 5 ° °
7 (] ] 2]
8 °
9 ® ®

Indicates
terminal

wiring.

©@ON

(1) Preset value of the counter in PC is set when X20 turns ON with a 4-digit BCD thumbwheel switch

connected to the PC external input terminal.

(2) Current value of the counter in PC is output to the 7-segmnet display unit.

decoder circuit.

- 120 —

This unit is provided with a



2. Sequence

X20

FUN 20 VX0
FUN 21 T/C250
FUN 10 T/C150
FUN 22 VY220

X0~X15—AR

A R—preset value of T/C50 (T/C 250)

Current value of T/C50 (T/C150) A R

A R-—Y220~ Y235

— 121 —



Concept of
arithmetic | Load| out

instruction

derule calculations

|Subtra gy ipiyDivide

Logic [Compare

Carry |Convert| Shift | Mask

Exchange

Distribute/
extract

10 [ 112 [ 116 [122 124 | 126 [ 128] 130 | 133 |

FUN1 | ADDI BCD add AR B+ constant—AR Constant (0000H ~9999H) 21 t1e| 1o
FUNI111 ADD BCD add AR B+ 1/0-AR WX, WY, WM, T/C100~2%5 21t 1ell]oe
FUNSL| ABYTI BIN add AR + constant—AR Constant (0~FFFF) 211190l e
FUN6I| ADBNR BIN add AR + I1/0-AR WX, WY, WM, T/C100~295 21t lejl e

FUN 1. 20

FUN 11 WM420

FUN 51 10
P
1]
]
1]
]

FUN 61 WM422

— 122 —



[Explanation]

1. ADD instructions add AR register data to component data and load the sum to the AR register .

There are

two kinds of ADD instructions; BCD and BIN ADD instructions, each of which consists of paired instructions
for selective use depending on whether the compontent data is a constant or 1/0.
2. When the sum is more than four (4) digits, the carry C turns OFF.
shown below.

Sum has exceeded
4 digits.

FUN 1

Remarks.

Remain unchanged Carry C indicates occurrence of error.
FUN N 1
FUN 51 1 -
Sum of 4 digits or less loaded Carry C indicates occurrence of a carry.
FUN 81 1

In this case, instruction is handled as

3. If a non-BCD data is handled by the FUN1 or FUN11 instruction, neither AR register nor carry C data is
assured. The table below lists example programs for different components.

[ Prog]raym -

AR

Explanation ‘

Constant FUN 1. 4321 B + BCD constant 4321 > A R
BCD Internal output FUN 11 WM500 AR B+ WM 500 —AR
addition -
Timer Current value FUN 11 T/C150 AR B+ T/C50 current value —»A R
counter Preset value FUN 11 T/C250 AR B+ T/C50 preset value —A R
Bin Constant FUN 51 735 AR + Bin constant 735 - AR
ddition
add Internal output FUN 61 WM422 AR + WM 422 —AR

Note: In case of FUN51 (ABYTI), a decimal entry is automatically converted into a hexadecimal value before
addition because of the restriction peculiar to the programmer. In addition, entry is possible only up to 3 digits.
For instance, entry (735),, is converted into (2DF).

— 123 —



Concept of 4rule calculations . ] Distribute/
arithmetic | Load| out — ' Logic (Compare| Carry | Convert| Shift | Mask |Exchange| oot
instruction

[ 10 112 | 116 | 122 [ 124 [ 126 | 128 | 130 | 133 136 | 137 | 143 | 145 147 149

Instruction .

FUN 12 WM420

FUN 52 20

FUN 62 WM430

FUN2 | SUBI AR B~— constant -AR Constant (0000H ~9999H) 213t
BCD subtract
FUNI2| SUB AR B— I/0—AR WX, WY, WM, T/Ci00~-295 21701l e
FUN52 SBYTI ) AR — constant -AR Constant (0~FFFF) 213l e
- Bin subtract
FUN62| SUBNR AR - I1/0—AR WX, WY, WM, T/C100~295 213 1|1 }e
—— rune 30 | <3 AR B-BCD constant "30:—»

—124—



[Explanation]

1. SUB instructions subtract component data from AR register data and load the difference to the the AR
register.
There are two kinds of SUB instructions; BCD and BIN SUB instructions, each of which consints of paired
instructions for constant and 1/0, respectively.

2. When subtraction results in O or a positive value, the carry C turns OFF. If the difference of subtraction

is negative, each instruction is handled as listed below.

Condition | Instructior AR -

FUN 2 1
, . Remain unchanged Carry C indicates occurrence of error.
Difference is FUN 12 1
negative. - -
FUN 52 Difference loaded 9 Carry C indicates decrement to next
(expressed in two’s complement) lower digit.
FUN 62 1

3. If anon-BCD data is handlded by the FUN2 or FUN12 instruction, neither AR register data nor carry C data
is reliable. The table below lists example programs for different components.

 Explanation
Constant FUN 2. 4321 AR B— BCD constant 4321 —A R
BCD Internal output FUN 12 WM500 AR B— WM 500 -AR
subtraction
Timer/ Current value FUN 12 T/C150 AR B~ T/C50 current value—A R
counter Preset value FUN 12 T/C250 AR B-— T/C 50 preset value — A R
Bi Constant FUN 52 735 AR —BIN constant 735—A R
in
btracti
svlraction Internal output FUN 62 WM510 AR - WMS10 —AR

Note: In case of FUN52 (SBYTI), a decimal entry is automatically converted into a hexadecimal value before
subtraction because of the restriction peculiar to the programmer. In addition, entry is possible only up to 3
digits. For instance, entry (735) i, is converted into (2DF).

—125—



Concept of Aerule calculations
arithmetic | Load| out —
instruction Add

Logic [Compare| Carry | Convert| Shift | Mask |Exchange Distriute/

[0 [ 112 | 16 |12 [124][126] 128 | 130 [ 133 | 1% | 137 | 143 | 145 | 147 | 149 ]

FUN3 |MULI AR B# constant —»AR Constant (0000H ~9999H) 213 1ol ]oe
BCD multiply

FUNI3|MUL AR Bx I/0—AR WX, WY, WM, T/C100~295 |2 |3 1e 11 |e

FUNB3|MBYTI . AR # constant AR Constant (0~FFFF) A SO O I
BIN multiply

FUN63 MUBNR AR % I/0-AR WX, WY, WM, T/C100~205| 2 | 3 | 2|t ]oe

 —

&S|
Z
w

10

T

e R ™

Z

Z

13 WM430

rrp
Z
o
o

50

iy

63 WM440

— 126 —



[Explanation]

1.

2.

MUL instructions multiply AR register data with component data and load the product to the AR register.

There are two kinds of MUL instructions; BCD and BIN MUL instructions, each of which consists of paired
instructions for constant and /0, respectively.

When multiplication results in 4 digits or less, the carry C turns OFF.

exceeds 4 digits, each instruction is handled as listed below.

Remain
unchanged

Remain
unchanged

Carry C indicates occurrence of error.

FUN 3
Product exceeds FUN 13
4 digits. FUN 53
FUN 63

4th digit and
lower of
product

5th digit and
upper of
product

Carry C indicates the product reaches

1

5 digits.

3.

is reliable.

The table below lists example programs for different components.

_ Constant FUN 3. 4321 AR B#* BCD constant 4321 — AR
Bin Internal output FUN 13 WM500 AR B* WM500 —AR
multipli-
cation Timer/ |Current value| FUN 13 T/C150 AR B* T/C50 current value —A R
nter

cou Preset value | FUN 13 T/C250 AR B#* T/C50 preset value —A R
BCD Constant FUN 53 735 AR % BIN constant 735 —AR
multipli-
cation Internal output FUN 63 WMS510 AR % WM510 —AR

Note: In case of FUNS2 (SBYTI), a decimal entry is automatically converted into a hexadecimal value before
multiplication because of the restriction peculiar to the programmer. In addition, entry is possible only up to
3 digits. For instance, entry (735) 4, is converted into (2DF)y,.

If the product of multiplication

If a non-BCD data is handled by the FUN3 or FUN13 instruction, neither AR register data nor carry C data

— 127 —



Concept of drule 'calculati,ons

arithmetic | Load| out ' ! Logic [Comparel Carry | Convert| Shift | Mask |Exchange Distribute/
instruction Add U0 mytiplyDivide g P y £/ extract

ct

[0 | 11z | 116 122 [124 [ 126 [ieg | 130 | 133 | 136 | 137 | 143 | 145 [ 147 [ 149 |

, -
Instruction | Abbreviation | = Name 2'
FUN4 |DIVI AR B, constant AR Constant (0000H ~9999H) 213 |e |l e
BCD divide
FUNIM4|[DIV AB B/ I/0—~AR WX, WY, WM, T/Clo0~295 |2 |1 ]e |3 |o
FUNS4| DBYTI AR  constant »AR constant (0~FFFF) 2111118 e
BIN divide
FUN64|DIBNR AR / I1/0—AR WX, WY, WM, T/C100~295 | 2 3 | 1|8 |e

- :

UN 4. 5
]
E
FUN 14 WM440
1
1
1
1
|
U

F

FUN 64 WM442

— 128 —



[Explanation]

1. DIV instructions devide AR register with component data and load the quotient to the AR register.
There are two kinds of DIV instructions; BCD and BIN divide instructions, each of which consists of paired
instructions for constant and 1/0, respectively.

2. Each DIV instruction is handled as listed below in cases of usual division and O division.

FUN 4 . 0
Quotient Remain Remainder is neglected.
FUN 14 unchanged. 0
Usual division —
FUN 54 . Carry C indicates 0
Quotient occurrence  of Remainder is loaded in ER.
FUN 84 error. 0
FUN 4 1
0 FUN 14 Remain Remain 1 c C indicat .
< unchanged arry C indicates occurrence of error.
FUN 54 g unchanged. 1
FUN 64 1

3. If non-BCD constant is handled in in the FUN4 or FUN14 instruction, neither AR register data nor carry C
data is reliable.
The table below lists example programs for different components.

Clossibiation : ; Explanation
Constant FUN 4. s AR B, BCD constant 5—A R
BCD Internal output FUN 14 WMS500 AR B/ WM 500 —AR
division Timer/ |Current value] FUN 14 T/CI50 AR B/ T/C50 current value —A R
COURLEr | procer value | FUN 14 T/C250 AR B T/C50 preset value —A R
BIN Constant FUN 53 12 AR/ BIN constant 12—AR
division Internal output FUN 64 WM510 AR  WMS10 —AR

Note: In case of FUN54 (DBYT), a decimal entry is automatically converted into a hexadecimal value before
division because of the restriction peculiar to the programmer. Besides, entry is possible only up to 3 digits.
For instance, entry (12),, is converted into (C)i.

— 129 —



Concept of 4-rule calculations . L
arithmetic | Load | out Carry |Convert| Shift | Mask [Exchange| Dstrioute
instruction Add ftumra'MultiplyDivide

[ uo | 112 116 | 122 ] 124 | 126 | 128 136 | 137 | 143 | 145 147 149

FUN 5 | ANDI

AR AND constant - AR constant (0000H ~9999H) 211 e
FUN 15 | AND AND AR AND [/O — AR WX, WY, WM. T/C100~295| 2 | § L
FUN 55 | BANDI AR, AND constant — AR, constant (00~FF) 211 s
FUN 6 | ORI AR OR constant — AR constant (0000H ~9999H) 2|t L
FUN 16 | OR OR AR OR I/O — AR WX, WY, WM, T/C 100~295| 2 | { o |
FUN 568 | BORI AR, OR constant — AR constant (00~FF) 211 .l
FUN 66 | EXOR Exclusive-OR| AR EOR [/O — AR WX, WY, WM, T/C100~295] 2 | } .
FUNB5 | WNOT Logical NOT | AR — AR None 111 o e

— 130 —



FUN 5. 3210
FUN 15 WM420

FUN 55 170

FUN 6. 2000
FUN 16 WM440

FUN 86 170
FUN 66 WMA450

FUN 85

— 131 —



[Explanation]

1. FUNS5 (AND!) and FUN6 (ORI) instructions perform logical AND and OR operations between AR register
data and constants 0000H to 9999H.
FUN55 (BANDI) and FUN56 (BORI) instructions perform logical AND and OR operations between the lower
8 bits (AR.) of AR regdster and constants 00 to FF. Because of the restriction peculiar to the progrmmer,
a decimal entry is automatically converted into a hexadecimal value before logical AND/OR operations.
For instance, entry (170)y, is converted to (AA)ss.

2. FUN15 (AND) and FUN16 (OR) instructions perform logical AND/OR operations between AR register data
and external input, external output, internal output or current value/preset value of timer/counter.

3. FUNG6 (EXOR) instruction performs logical exclusive-OR operation between AR register data and external
input, external output, internal output or current value/preset value of timer/counter.

4. FUNSS5 (WONT) instruction performs logical NOT operation of AR register data.

—132—



Concept of 4-rule calculations . . Distribute/

arithmetic | Load | out i Logic [Compare| Carry | Convert| Shift | Mask |Exchange) of s

instruction Add " MultiplyDivide

10 [ 112 | 116 122|124 [ 126 [128 ] 130 | 133 | 136 [ 137 [ 143 | 145 147 | 149

~ | i : B Change in register:

Instruction | Abbreviation Name Function Component o8 ,
o ~ e SP| AR ER| CR Acd
FUN 7 | CPEHI AR = constant----1~C AR <constant---0-C | constant (0000H ~9999H) 2 e | el L.
FUN 17 | CPEH Compare (2) |ARZI/0-1-C AR<I/O-0-C WX, WY, WM. T/C100~295] 2 | » | « | § | »
FUN 57 | BCPHI AR, 2 constant---1-C AR, <costant--~-0-C | constant (00~FF) -2 T I B
FUN 8 | CPEI AR=constant---1-»C AR#constant---0—C | constant (0000H ~9999H) 211t
FUN 18 | CPE Compare(=) |AR=1/0-++1-C AR#I/Ow-0C WX, WY, WM, T/C100~295 2 | « |« |1
FUN 58 | BCPE! AR =constant-++-1-C AR, #constant---0—C | constant (00~FF) 2 el et T
FUN 9 | CPLI AR<constant-+~-1»C ARZconstant----0-C | constant (0000H ~9999H) 2 B R B
FUN 19 | CPL Compare (<) | AR<1/O-1-C ARZI/O-0-C WX, WY, WM, T/C100~295} 2 | » | « | § | »
FUN 69 | BCPLI AR, <constant--+1-C AR, Zcorstant-+--0-C | constant (00~FF) 2 NN T R

— 133 —



-

FUN 10 T/C150
FUN 7. 200
FUN 23 M550
FUN 20 VX0
FUN 21  WM600
FUN 20 vV X20
FUN 18 WM600
FUN 23 M555

T/C 50 current value — AR

X0~X15—AR
AR W M600

X20~X35—AR

— 134 —




[Explanation]

1.

Compare instructions are classified into 3 types: =, = and<. Each type consists of 3 kinds of instruc-
tions. So nine kinds of compare instructions in tota! are selectable to suit the component. AR register and
component data are compared as binary numbers without sign. If the result of comparison is true, carry
C is set to ON. If it is false, carry C is set to OFF.

FUN7 (CPEH!) and FUN9 (CPLI) are instructions to compare AR register data with constants 0000H to
9999H. FUNS57 (BCPHI), FUN58 (BCPE!) and FUN59 (BCPLI) are instructions to compare the lower 8
bits (AR,) of AR registem with constants 00to FF. Because of the restriction peculiar to the programmer,
a decimal entry is automatically converted into a hexadecimal value before comparison. For instance,
entry (255),, is converted into (FF)s.

FUN17 (CPEH), FUN18(CPE) and FUN19(CPL) are instructions to compareAR register data with external
input, external output, internal output, timer/counter current value and preset value. Component data need
not be BCD data (0000H through 9999H).

— 135 —



Concept of 4-rule calculations . . . Distribute/
arithmetic | Load| out Logic [Compare Carry |Convert| Shift | Mask |Exchange| roce
instruction Add | SUt ButtpiyDivide ;

[ 1w | 1z | 116 |122]124 [126[128 | 130 [ 133 137 | 143 | 45 | 147 | 149 |

FUNZ23 oucC Qut carry CcC—1/ Y, M 110l oo e
FUNS83 cLC Clear carry C+0 None 1100 e
FUNB84 SEC Set carry C«1 None 11elel1]e
__{ ‘.___—
FEUN1O T/C150 T/C50 current value — AR

FUN7. 200 ARz BC Dconstant “200” ------ 1—C

FUN23 M550

[Explanation]

1. The FUN23 (OCU) instruction outputs carry C data to internal output (M) or external output (Y).
2. The FUN84 (SEC) instruction sets ""1'" to carry C. The FUN83 (CLC) resets carry C to "'0”

— 136 —



Concept of 4-rule calculations . Distribut
arithmetic | Load| out o Logic (Compare Mask |Exchange| 2 e/
instruction Add |3} ra‘iMul’tipl Divide extr
[ uo [ m2 [ 16 [122 124 [126 128 | 130 | 133 [ 145 [ 147 [ 149
Inctruction | Abbreviation| N Function o
FUN24 | BCD BCD convert | A RBCD convert 5 None Lt e[t ]oe
FUN25| BNR BIN convert | A g BIN convert 5 g None 1|t elt]e

FUN 0. 4095 4095H AR

FUN 25

 omEEE g ey

— 137 —



[Explanation]
1. The FUN24 (BCD) instruction converts the binary data in the AR register into BCD data. If the result of

conversion is 4 digits or less, carry C turns OFF.
N I N B
AR [ofofofo[ti[i[r[n[aaa[a[3T1]1] (Binary)

@ FUN24
r——4 ] 0 I 9 I 5*‘—]
AR [o]1]ofoJolooTo1]o o] o1 ]ol1] (BCD)

1 the result of conversion overflows 4 digits, the AR register data is not converted (the contents of register

remain unchanged) and carry C turns ON.
2. The FUN25 (NR) instruction converts the BCD data in the AR register into binary data. When the AR

register contains BCD data before conversion, carry C turns OFF.

A L R R
AR [ofofofofofotJoJo 1 o[1]o]1]o]1]

rows

R NS L
AR [ofofofofofofofoft[a[i[1]1[a]1s]

Before conversion, each digit of the AR register must be value in the range of 0 to 9. If the AR register
data is within A to F, it will not be converted (the contents of register remain unchanged)and the value of

carry C will become unreliable.
—138 —



Concept of 4-rule calculations
arithmetic | Load | out

instruction Add (3P atu iy Divide

Mask |Exchange| Distribute/

Logic [Compare etrct

[0 | n2 | ue [122]124[126[128 ] 130 | 133 |

FUN74 SEG 7-segment decode | A Ry 7-segmentconvert A R None 113000
FUN75 ASC ASClIIconvert| A RiL ASCII convert AR None 11310 e e

o

FUN20 Vv X20 X20~X’3‘5~*>AR

FUN74

v
'
i
‘
1
'
'
1
.
v

FUN75

- 139 —



[Explanation]

1. The FUN74 (SEG) instruction covers the lower 4 bit (AR;L) data of AR register into a 7-segment display
code and stores in the lower 8 bits (AR.) of that register.

2. The FUN75 (ASC) instruction converts the lower 4-bit (AR..) data of AR register into an ASCIl code and
stores it in the lower 8 bits (AR,) of that register.

3. The upper 8 bits (ARy) of AR register remain unchanged before and after excution of the FUN74 (SEG) or
FUN75 (ASC) instruction.

4. Shown below is a FUN74 (SEG) and FUN75 (ASC) conversion table.

Telilelalelola]

0 ololala|1l1]1]

] olojojoloj1 10 !

2 ol1lolr|1lo]1]a = 32

3 ol1lofol 12" F] 33

4 ol1]1]ojolt]1]0 34 e
5 o[1(1jo[1[1]0][n [ 35 tl g /b
5 of1la|1]1]1]0]1 36 —
7 ofoTrolofa 11 = 37 e/___/c
8 AT & 38 d
] ol1t1i0f1|1i1|1 o 39 Display segments
A o alajola 1] i

B o[1[111l+{10]0 n 4

C olol1l1]1]0]01 43

D oifola [+ 3ol & 44

£ NEERBRLE 45

F o1 [1lilojolo r 46

140 —



Concept of 4-rule calculations

arithmetic |Load| out i —
instruction Add |y jMultipl)%DWlde

Exchange Distribute/

Logic [Compare axtract

[ 10 | 112 | 116 |122[124]12 [128 | 130 [T133 [ 13

Instruction 'Abbreviﬁti@n ' N,éme, ' o ancéjon ; :
FUN78| ENCOD Encode 16—4 encode None 1131 10
FUN79| DECOD Decode 4-»16 decode None 11t 1e|t e

X20~X3%—>AR

_i FUN20 VX20

D1s 010 00
FUN78 <! ar[o]oJo]olo[1]o o o o o o o 0 a]0]
Encode

arfoloJololo]ojofofofofolor]ol1]0]
All zero 10

<J 0 010 11011
FUN79 ar[ofofofofoJofofoTofofofof1]al1]0]

Decode

0
,,,,,,, ARIO!0[010|0|Um0|0[0}0|0[0101|0[01

610

—141—



[Explanation]

1. The FUN78 (ENCODE) instruction sets into the AR the uppermost bit position (1 to 15), where "'1" is set,
among the bits of the register. In case all bits are 0, AR and C become 0 and 1, respectivenly. When two
or more bits are 1, the uppermost bit is selected.

2.

The FUN79 (DECODE) instruction sets 1 at the bit position corresponding to the value of AR register (Oto
15) and clears all other bits to 0.

In case the AR register value is 16 or more, AR and C become 0 and
1, respectively.

—142—



Concept of 4-rule calculations

arithmetic | Load| out o Logic [Compare
instruction Add |4 MuttiplyDivide

Exchange E’ﬁg‘te/

L 110 | m2 [ 116 [122]124[126]128] 130 | 133 | 136 | 137

Left shift t t
FUNZ27 RSFR Right shift P lel f e
FUN7Y8 ROL CW rotate llell]e
FUN77 ROR CCW rotate tlell e

FUN76

FUN77

143 —



[Explanation]

1.

The Fun26 (LSFR) instruction shifts AR register data 1 bit to the left. Upon shift, the least significant bit
is padded with zero and the overflow bit is set to carry C.

The FUN27 (RSFR) instruction shifts AR register data 1 bit to the right. Upon shift, the most significant
bit is paddedwith zero and the overflow bit is set to carry C.

The FUN76 (ROL) instruction shifts AR register data 1 bit to the left. Upon shift, the overflow bit is set
to carry C and the least significant bit is padded with the previous data in the carry C.

TheFUN 77 (ROR) instruction shifts AR register data 1 bit to the right. Upon shift, the overflow bit is set
to carry C and the most significant bit is padded with the previous data in the carry C.

— 144 —



Concept of 4-rule calculations . ) Distribute
arithmetic |Load| out s Logic Compare Carry | Convert| Shift | Mask |Exchange| v ¥
instruction Add % ra"Mu!hp!%DlVlde o
L 110 | 12 [ 116 [122 [124[126[128] 130 | 133 | 136 | 137 | 143 | 145 | 147 | 149 |
. . : : - o ;M—g Cha 1ge;i'r:1 register
Instruction | Abbreviation Name ~ ; Function 1 Component =~ G o
L . o o g,’ ARIERI CRjACC
EUNT72 MASK L Masksb by specified bits from upper- d~255 21t 1elo]e
Mask ﬁos
EUNT73 MASKR mgsskls) by specified bits from lower- 0~256 21110 eloe
X20~X35—AR

FUN20 Vv X20

FUN72 4 . o Maskmg of 4 bits

;AR ﬂﬂﬂﬂﬂ. ofrf1

=
=
=]
= ol
B B

X40~X5B5—AR
FUN20 Vv X40

FUN73 8

Masking of
| 8 bits

arlof1]1]ofol1Tol1[olo]ofofofoTofo]

— 145 —



[Explanation]

1. FUN72(MASKL) and FUN73 (MASKR) instructions mask the AR register data by the specified number of
bits.
The FUN72 (MASKL) instruction masks the data by the specified number of bits starting from the most
significant bit (bs).
The FUN73 (MASKR) instruction masks the data by thespecified number of bits starting from the least
significant bit (bo).
Even when 17 or more bits are specified, only 16 bits are validated.

2. Application example of mask instruction
When loading the 2-digit thumbwheel switch data into XO through X7 to be

Ezmtf:a‘ followed by loading of ordinary input signals in X8 through X15, the switch
— data is also loaded into X8 through X15 automatically. This is because the
B ¢ FUN20 (LOADB) instruction operates on a data word of 16 bits long. To
! l B8 mask X8 through X15, use the FUN72 (MASKL) instruction.

T T 3 1 FuNZ20 VX0 X0~ X 15— AR

X15 X8 X7 X0

PC ' bemasked

FUN72 8

146 —



4-rule calculations

Concept of . , L
arithmetic | Load| out Logic (Compare Carry | Convert| Shift | Mask Distribute/
instruction Add S0 mutiplyDivide '

[ 110 112 | 116 [122 | 124|126 |128 | 130 | 183 | 136 | 137 | 143 | 145 | 147 [ 149 ]

Chka;ige'"'in regisiéf

. Component | | S8rT
T ' 2" ARLERTCRTACC
ARnez ARL None 1 1e|o]oe
FUN81| BSWAP | Exchange ARL4 22 AR None llojo e
FUN82 XCG AR 2 ER None 113 1e o
T fue vxe KE~ X3 AR
FUNSD FUNBOEWARY
FUNS . EUNBIBSWAR)
—
FUNOQ. 9500
FUNS2
FUNO. 4310 £R AR
fefsloboe] ([af3f1]0])

— 147 —




[Explanation]

1. The FUN8O (SWAP) instruction exchanges the upper byte (bs through bs) and the lower byte (b, through

b,) of the AR register.

2. The FUN81 (BSWAP) instruction exchanges the upper nibble (b, through b) and lower nibble (b, through
b,) of lower byte in the AR register.

3. The FUNB2 (XC@) instruction exchanges the AR register and ER register. TheFUNB82 instruction is used
for setting data in the ER register.

— 148 —



Concept of 4-rule calculations
arithmetic | Load | out

Logic (Compare Carry |Convert| Shift | Mask [Exchange Dt/

instruction Add ft”b"a'MultiplyDivide extract
[ 10 | 112 | 116 [ 122 | 124] 126|128 | 130 | 133 | 136 | 137 | 143 | 145 | 147 | 149 |
«'?{3 Change inregister
Instruction. | Abbreviation Name Function Component 2¢
: S| AR| ER| CR| Acc
FUN48 E X Extract | E§ighes data info AR from 1/0} None T3 e|t]o
FUN| DB Distribute | SaiPieS spatflq B Br AR 0 /0 None 1]ele|t o
.
FUN 0. 700 Constant 700H~>A R
FUN 82 ARZER ER[0[7]010]
R EREEED
FUN 48 % M7 e EEEE R — 2 AR
]
]
]
i
FUN 0. 1200 Constant 1200H—AR
FUN 82 ARZER ER[TTZT0710]
FUN 49 % AR —p T/C200 Pe[=r === == ====~]b]

— 149 —



[Explanation]

1. Data is to be exchanged between the 1/0 address-specified by the ER regitser and the arithmetic register
AR. The ER register contains BCD data. The most significant digit O andl stand for usual /0 and timer/
counter, respectively. FUN48 (EX) fetches data into AR, and FUN49 (DB) outputs data to 1/0.

2. CR will become 1 if either instruction is executed with an undefined /0 specified by theER register (only
when Acc = 1).

- 150 —



1 |PRINCIPLE OF PC

2 |INPUT/OUTPUT AND NUMBERS

3.1 Basic Instructions

3.2 Application Instructions (1)

3.3 Arithmetic Instructions

~—151—



Application Instructions (11}

T

= . , , - ; | Change inregister | &

.f% Instructiqxl _ Symbol . Name . Funcytio’n' . . Component ; ;ﬁg o o g o
Eﬁﬁ o , , , iz ARERORACG R
fg FUNS1| REFX Refreshes specified input. X 11e|leje o] 15
E FUNG2| REFY 10 refresh Refreshes specified output. Y 11e|® o ®| 153
E‘ FUNBS3 I NT | Declares interrupt. | Argyment Reclares interrupt al| Argument 2 el=1—|—-1—]155
% FUNS4| RTH 5&2?&?&’ from | Recovery from interrupt None 1 i\{]?é’;‘fug‘%fore 155
QE) FUN4T CALL Calls subroutine. Arguments 0 to 63 2 eiele | o 15
g’ FUN43 SB Subroutine Defines subroutine. Arguments 0 to 63 ol = - =1 = 157
% FUN44 RTS Recovery from subroutine. None 1 é{ﬁ)lx}lgupi%feos:%ll 157

— 152 —

o: Register remains unchanged

1 : Register changed
—: Register cleared



Interrupt Subroutine

155 ] 157

",:11‘53',”: S

 Function
FUNJN REFX Inputs specified 1/0. X 11|06 oe !l e
1/0 refresh —
FUNg2 REFY Outputs specified 1/0. Y 1]0]0 0o
1 scan 1 scan
FUN 91 X 10 L P/ Input refresh ) Output refresh
FUN 91 X11 Program execution. Program execution.
FUN 91 X12 Usual scan
- 1 scan 1 scan N
X 10 X1z ;
- @ FuNol| [FuNoz
X1 e g

M400 = \ \ /

‘_{ l’”_"" FUN 92 v220 |+ Input refresh QOutput refresh

170 refresh according to FUN91/FUN92 instructions

Specified input and output can be
refreshed in the middle of scan.

— 153 —



[Explanation]

1. FUN91 (REFX) is imputrefresh instruction. It rewrites data memory of the specified input number in the
course of scan (upon its execution). This instruction does not have a start condition.

2. FUN92 (REFY) is output refresh instruction. It rewrites the specified output number and its data memory
the same as in the current Acc register during scan (upon its execution).

3. Input signals shorter than scan time can be acquired by uniform allocation of the refresh instruction at
several locations in the entire program.

— 154 —



1/0 refresh

Subroutine

intervals of 10 ms

N

FUN 94

’__

eclares ixed i '
INT glterrupt. W él}t%r%)st at fixed intervals| Argument 2 o~ _
FUNS4 RT I %%g;)rvueg%/ from| Recovery from interrupt None 1 i\rlutaé}xr%ptbefore
10ms 10ms
Timer ?““ =1r( ,1'
Usual program :
e prog interrupt ﬂ ﬂ ﬂ
o ¢ | 4 ] LS
FUN 932 bt program ( r (
4 Interrupt S
Interrupt program at fixed program

— 155 —



[Explanation]

1. Aninterrupt program is to be located next to a usual program. These programs are to be separated by the
FUN93 (INT) instruction. FUN99 (END) is not used. The end of interrupt program must always be the
FUN94 (RT}) instruction. Neither FUN93 nor FUN94 requires start condition.

2. Interrupt program is excuted every 10 ms when it is written between the FU N93 2 (INT2) and FUN94 (RTH)
instructions after a usual program.

3. When applying an interrupt, the instruction under execution is terminated and the relevant interrupt program
is excuted once. On this occasion, the contents of register are automatically saved.

After termination of the interrupt program, the usual program before interrupt program returns and the
contents of register are recovered.

'*—HJ FUN 20 X40

FUN 21 M460 «a—— Occurence of inferrupt

FUN 17 M440 After termination of
- FUN21 instruction,
 the contents of ’

register are saved.

FUN 23 M413

[ After interrupt

§ program, tl ,cyonyten'ts
of register are .
~recoverd. '

Interrupt program

4. Interrupt instruction and jump instruction without adressing cannot coexist.

— 156 —



1/0 refresh Interrupt

153
Instruction | Symbol . Name ’ . . "Fﬁnc’ﬁon .
FUN42 CALL Calls subroutine. Arguments O to 63 e/ ol e o
FUN43 SB Subroutine Defines subroutine Arguments O to 63 - - -
i Value  bef
FUN44 RTS Recovery from subroutine None 1 su%r%%tmgc%

Main routine program

——H———{——FUNM 1 }— % | Calls subroutine.

Main routine program

FUN43 1 } % i Start of subrouting |

Subroutine program

«—r FUN44

B.)

- End of subroutine

-

— 157 —



[Explanation]

1. Subroutine program is to be located next to the main routine program. At the head of subroutine program,
the FUN43 (SB) instruction is required to be set. Each subroutine program must be terminated by the
FUN44 (RTS) instruction. Subroutine can be called by the FUN42 (CALL) instruction.

2. The FUNS9 (END) instruction is unnecessary between the main routine program and subroutine program.
Neither FUN43 nor FUN44 requires the start condition.

3. In a subroutine, jump and master control instructions are unusabile.

— 158 —



	CoverPage
	USING THIS MANUAL
	Table of Contents
	1. PRINCIPILE OF PC
	PC Configuration
	Processing System
	PC Program
	Programming Notes

	2. INPUT/OUTPUT AND NUMBERS
	External Inputs (X) and External Outputs (Y)
	Internal Outputs (M)
	Timer (T)
	Counter (C)
	Instruction Words and I/O Numbers
	Arithmetic Register

	3. PROGRAMMING
	Basic Instructions
	Application Instructions (I)
	Arithmetic Instructions
	Application Instructions (II)




