
PROGRAMMING MANUAL

EM-IISERIES

HITACHI

USING THIS MANUAL

Introduction

This manual describes the EM-II Series Programmable Controller. This manual tells how to install, program, operate, and maintain your programmable controller.

Formore information on the HITACHI product line refer to the publications listed under additional information.

Manual Contents

- Chapter 1 Principle of PC
- Chapter 2 Input/Output and Numbers
- Chapter 3 Programming

PROGRAMMING MANUAL

EM-II SERIES

TABLE OF CONTENTS

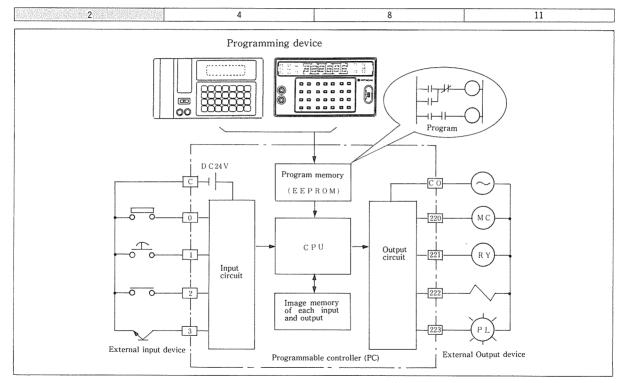
1.	PRINCIPILE OF PC
	PC Configuration 2 Processing System 4 PC Program 8 Programming Notes 11
2.	INPUT/OUTPUT AND NUMBERS
	External Inputs (X) and
3.	PROGRAMMING
	Basic Instructions 49 ORG, ORG NOT, OUT, OUT NOT 51 AND, AND NOT 53 OR, OR NOT 55 STR, STR NOT, OR STR, AND STR 57 Application Example 61 Application Instructions (I) 67 Start and End 70 Edge 73 Set, Reset 75 Step Process 77 Master Control 84

Distribute/Extract	Jump Up/down Counter Branch and Return Latch Shift Register NOP Arithmetic Instructions Concept of Arithmetic Insturuction Load Out Add Subtract Multiply Divide Logic Compare Carry Output Convert Shift Mask Exchange	92 95 102 110 112 116 124 124 133 135 136 137 143
Jubi outline137	Distribute/Extract	149 151 153

1 PRINCIPLE OF PC

2 INPUT/OUTPUT AND NUMBERS

3 PROGRAMMING

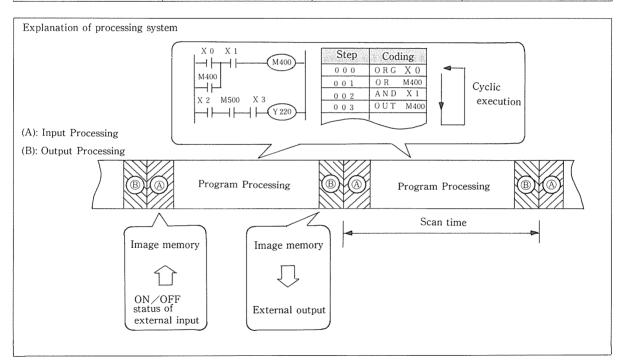

- 3.1 Basic Instructions
- 3.2 Application Instructions (I)
- 3.3 Arithmetic Instructions
- 3.4 Application Instructions (II)

PC Configuration

Processing System

PC Program

Programming Notes

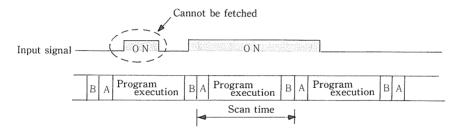

- 1. The programmable controller (PC) consists of CPU, program memory, image memory of each input and output, input circuit, output circuit and power supply.
 - (1) The CPU is composed of a microprocessor which excutes logic and arithmetic operations, and the system software which controls PC itself.
 - (2) The program memory is used to store a user-defined sequence program (ladder diagram). Program is to be generated by using the exclusive programming device or personnal computer. In the E/EM series, EEPROM is used for program, so a stored program will not be lost after the PC power supply is turned off. The program can be modified easily if necessary.
 - (3) The image memory of each component contains data including ON/OFF status of input/output and current value of timer/counter. These data change along with program execution.
 - (4) The input circuit composes an interface to the external input devices (such as pushbutton switches, limit switches and proximity switches). It is electrically isolated by photocouplers.
 - (5) The output circuit composes an interface to the external output devices (such as electromagnetic contactors, valves and lamps).

PC Configuration

Processing System

PC Program

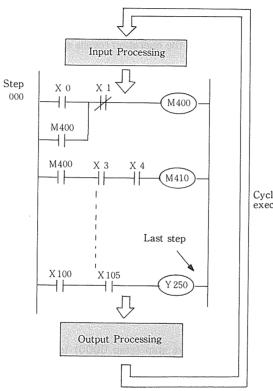
Programming Notes



1. Scan time

The PC sequentially executes the written program (stored program) from its first step to the last step, then returns to the first step again and repeats the operation (cyclic execution). The duration of a single cycle of this operation is called the scan time.

2. Input operation


The ON/OFF status of external input is fetched in the image memory. Even if the ON/OFF status of external input changes during program execution, the input status in the image memory remains unchanged. The status change can be read only during input processing for the next scan. So an input signal can be fetched only when its duration is longer than the time for a single scan. For fetching an input signal with a shorter duration than above, external interruption input or refresh instruction is usable.

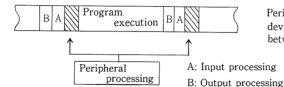
3. Program execution

A program runs sequentially from its start step (step 0000) to the last step according to the written instructions. The status of external output, internal output, etc. changes sequentially on the image memory along with program processing.

[Example]

Cyclic execution

4. Output processing

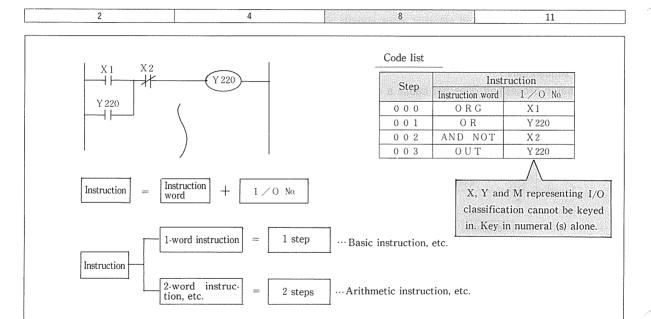

The ON/OFF status of external output on the image memory is sent to the output circuit.

5. I/O batch processing

Reading the status of all external input signals at the beginning of a scan and outputting the resulting signals to an external device at the end of this scan is called I/O batch precessing. (Some PC·s use direct processing in which the external inputs are read sequentially and the result is output to the external device also sequentially.)

I/O batch processing does not cause a change in the ON/OFF status of external input and output during a scan. This makes the timing check on a program easy. Therefore, this system is widely used on small-scale PC·s. The EM-II employs this system.

6. Peripheral processing



Peripheral processing (communication) with programming device, etc.) is to be made for only 1 ms during the time between program execution and input processing.

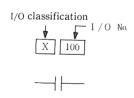
Processing System

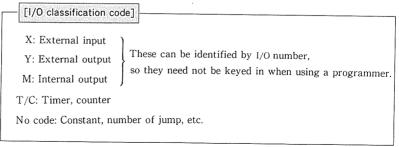
PC Program

Programming Notes

1. Instruction

(1) An instruction is a combination of an instruction word (basic instruction, application instruction or arithmetic instruction) and the I/O number (external input, external output, internal output, timer, counter, constant or the like). Some instruction words do not require an I/O number.

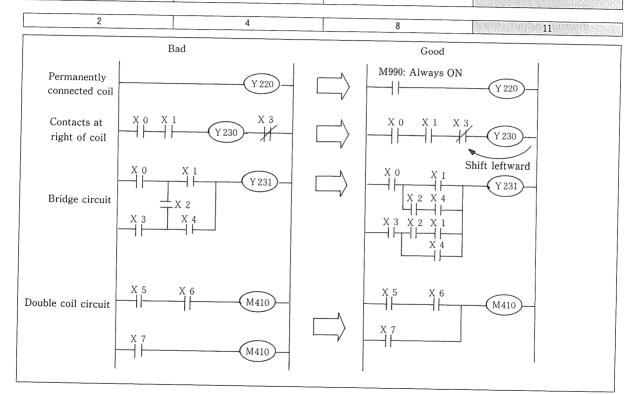



(2) A single word occupies one step.

There are two kinds of instructions; one-word (16-bit) instruction and two-word (32-bit) instruction. Because the capacity of standard EM-II program memory is 3,997 words,up to 3,997 one-word instructions are programmable.

2. I/O number

A code representing the $\ensuremath{\mathrm{I/O}}$ classification is prefixed to each $\ensuremath{\mathrm{I/O}}$ number.


The I/O number is determined by the assignment table (described later) so that numbers used for X, Y and M are not used twice, and the I/O classification (X, Y and M) need not be keyed in when using a programmer. However, X, Y and M are written in this manual so that the reader can easily recognize the I/O classification in the sequence program.

PC Configuration

Processing System

PC Program

Programming Notes

1. Permanently connected coil

An output coil cannot be connected directly to the left bus. It must be connected via the contacts of special internal output (M990) which are always closed.

2. Contacts at right of coil

Although the contacts of thermal relay are connected at the right of output coil in the relay sequence, it is unallowable in the PC sequence. In case such a connection is required, the contacts must be connected at the left of the coil.

3. Bridge circuit

Vertical disposition of any contacts cannot be programmed. So connect the contacts in the horizontal direction.

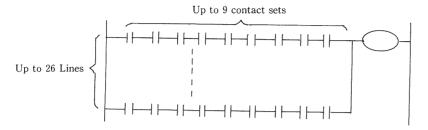
4. Double coil

Do not use the same output coil more than once, otherwise a double coil error (E. display) will be detected

X 0
O F F

X1
O N

Y 220


The second coil is given operational priority.

during the syntax check. However, operation will continue even if a double coil error occurs, and the output signal of the second coil will be used in the subsequent steps.

NOTE

Coil following the FUN02 (IF) or FUN;3 (IFR) is not treated as a double coil error.

5. Restrictions on number of serial and parallel contacts

- (1) For entering a program with the portable graphic programmer (PGM-GPE2), the number of contact sets is restricted to 9 on each of 26 lines at maximum.
- (2) For printing out data using the universal programmer (PRGMJ-R2), the number of contact sets is restricted to 8 on each of 26 lines at maximum.
- (3) Although there is no restriction imposed in either vertical or horizontal direction when using the standard programmer (PGMJ) or universal programmer (PGMJ-R2), it is recommended to avoid using contacts beyond 8 sets on each line and beyond 26 lines in consideration of (1) and (2) above.

Q What is the difference between the PC and relay panel?

The PC is more compact, has higher performance and more flexibility and is easier to operate than a relay panel.

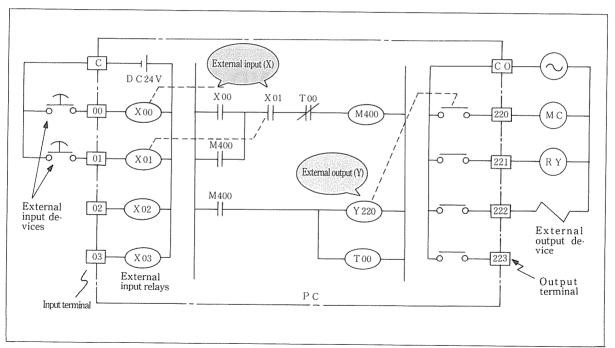
System		Relay system		PC control
Function	Δ	Complicated control is enabled by using many relays.	0	Control can respond to any complication through programming.
Modification of control data	×	Impossible except by rewiring.	0	Possible freely through program modification.
Reliability	Δ	No problem in normal use. However, poor contact may occur and the servise life is limited.		Highly reliable because semiconductors are used in key components.
Universality	×	Complete device serves for only one purpose.		Usable for any control through programming.
System expandability	Δ	Difficult because modification is required.		Freely expandable within capacity.
Ease of maintenance	Δ	Periodic maintenance and replacement of service parts are required.	0	Repair is possible inside each unit
Necessary technical understanding	0	Popular, widely known, simple and easy to understand	Δ	Programming software rules must be learned.
Equipment size	Δ	Usually large		Remains compact for even complicated and sophisticated control
Design and manufacturing periods	×	Many drawings must be prepared, and a long time is needed for arranging parts and performing assembly test.		Design is easy even for complicated control. Manufacture can be completed in a shorter time period. Hardware is usable for general purposes (readymade products).

Sign: \bigcirc Very good \triangle Good \times Poor

1 PRINCIPLE OF PC

2 INPUT/OUTPUT AND NUMBERS

3 PROGRAMMING


3.1 Basic Instructions

3.2 Application Instructions (I)

3.3 Arithmetic Instructions

3.4 Application Instructions (II)

External in- puts(X), exter- nal outputs(Y)	Internal outputs(M)	Timer(T)	Counter(C)	Instruction words and I/O numbers	Arithmetic register
16	18	27	36	40	47

1. External input (X)

Input sensors, such as limit switches, pushbutton switches, proximity switches and photoelectric switches are external input devices of the PC. They are connected to the input terminals of the PC and drive the external input relay (X) in the PC.

(The ON/OFF status of each external input device is fetched in the image memory.)

External input relay is referred to as an external input (X) hereinafter. The external input (X) has many normally open contacts ("a" contacts) and normally closed contacts ("b" contacts). They are used for generating the sequence in the PC.

2. External output (Y)

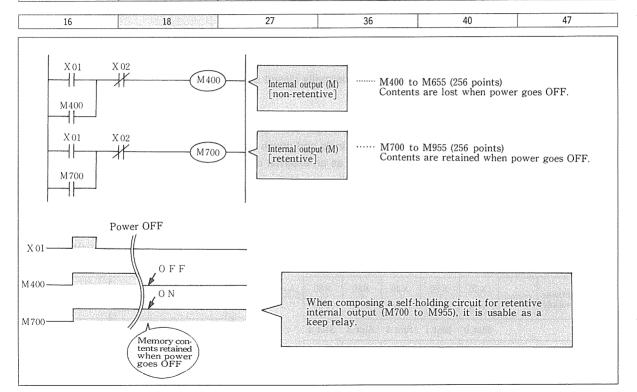
Electromagnetic contactors, valves, indicator lamps, etc., are external output devices of the PC. These devices are connected to the PC output terminals and driven via the contacts of external output relays in the PC. External output relay is referred to as an external output (Y) hereinafter.

The external output (Y) also has many normally open contacts ("a" contacts) and normally closed contacts ("b") contacts). They are used for generating the sequence in the PC.

3. I/O number assignment

I/O numbers are assigned according to the slot position of base (BSM-3 to 9). When mounting an input module in slot 0 in the example below, input numbers X00 to X15 are assigned, and output numbers Y220 to 235 are assigned when mounting an output module in slot 1 in the same example.

						•								
Input [X]	Power supply	CPU	X00 { X15	X20 { X35	X 40 \$ X 55	X60 { X75	X80 \$ X95		Power supply	X100 { X115	X120 { X135	X 140	X160 { X175	X 180 \$ X 195
	r		Slot 0	Slot 1	Slot 2	Slot 3	Slot 4			Slot 5	Slot 6	Slot 7	Slot 8	Slot 9
Output [Y]	Power supply	CPU	Y200 } Y215	Y 220	Y 240 \$ Y 255	Y 260 } Y 275	Y 280 { Y 295	\sim	Power supply	Y300 \$ Y315	Y320 \$ Y335	Y340 \{ Y355	Y 360 { Y 375	Y380 { Y395


External inputs(X), external outputs(Y)

Internal outputs(M)

Timer(T) Counter(C)

Instruction words and I/O numbers

Arithmetic register

- 1. The internal output (M) is equivalent to an auxiliary relay in relay sequence. It has many normally open contacts ("a" contacts) and norlally closed contacts ("b" contacts). They are used for generating an internal PC sequence.
- 2. There are two kinds of internal outputs (M); non-retentive (memory cleared to zero because of status change from power OFF to ON, stop to run or run to stop) and retentive (memory not cleared to zero regardless of status change from power OFF to ON, stop to run or run to stop). This is discriminated in I/O number.
- **3.** When composing a self-holding circuit for retentive internal output (M700 to M955), it is usable as a keep relay.
- 4. Internal outputs with special function (M960 through M991)
 There are special internal outputs which function as a clock or a flag for a failure. Table 2-3 details the functions of each special internal output.

Table 2-1 shows how the external input (X), external output (Y), internal output (M) and timer/counter (T/C)) are assigned.

Table 2-1 Assignment of I/O Numbers (1/2)

Cla	ssification	Number			Remarks 5/1064 3/5 leconomy			
Cia	SSIIICATIOII	Slot	Input module	Output module	AM constant Israelin to obein pure see oper i			
		0	X 0~ X 15	Y 200~ Y 215	Decimal numbers			
		1	X 20~X 35	Y 220~ Y 235	Numbers 0 to 15 are assigned when mounting a 16-point			
Exter	nal input	2	X 40~X 55	Y 240~ Y 255	input module in slot 0.			
((160 points)	3	X 60~X 75	Y 260∼ Y 275	 Numbers 200 to 215 are assigned when mounting a 16 -point output module in slot 0. 			
or		4	X 80~ X 95	Y 280~ Y 295	Numbers 8 to 15 are omitted when mounting an 8-point			
••		5	X 100~ X 115	Y 300 ~ Y 315	module.			
exteri	nal output	6	X 120~ X 135	Y 320~ Y 335	 For assignment of special modules, refer to Section 8. 			
((160 points)	7	X 140 ~ X 155	Y 340~ Y 355				
		8	X 160~ X 175	Y 360~ Y 375				
		9	X 180~ X 195	Y 380~ Y 395				
	Non-retentive memory at power failure (256 points)		M 400 -	~ M655	 ○ Decimal numbers ○ Each number has a data capacity of 8 bits. M400 b₇ b₆ b₅ b₄ b₃ b₂ b₁ b₀ M401 b₇ b₆ b₅ b₄ b₃ b₂ b₁ b₀ 			
Internal output	Retentive m power failu (256 po	re	M700~ M955		 The bit handling instruction determines ON/OFF status of b7. The word handling instruction handles 8-bit data of M400 and that of M401, 16 bits in total, when No. 400 is designated. 			
	Special function (32 points)		M 960 -	~ M991	All bit dataDetailed in Table 3-3.			

Table 2-1 Assignment of I/O Numbers (2/2)

Classification		Number			
Classification	Slot	Input module Output module	euros nos sa sacremarks		
Timer and counter	Coil contacts Current	T/C 0~T/C 95	 Decimal numbers Timer and counter share the same number. Up-timer and up-counter, respectively 100 is added to timer/counter number (2-digit) for representing a current value, and 200 is added for indicating 		
(96 points in total)	Preset	T/C 200~T/C 295	preset value. States of coil and contacts are shown by bit data. Current value and preset value are of 16 bit data.		
	value				

Table 2-2 lists each range of constent and argument used in instrucctions such as AJMP and MODE.

Table 2-2 Each Range of Constant and Argument

C	Classification	Range	Remarks
		0000 H ∼9999 H	The hexadecimal code H is not suffixed at the time of program entry. (Example) FUNO. 1234 (1234H→AR)
Constant	Word constant	0 ~FFFF	This constant is designated in a decimal number because the programmer does not have keys A to F which are indispensable for hexadecimal designation. Entry is possible in up to 3 digits. Effective range of decimal constant: 0 to 999 (Example) FUN51 427 (AR+1ABH → AR) (Decimal 427=hexadecimal 1ABH)
Constant	Byte constant	00 ~ F F	This constant is also designated in a decimal number because the programmer does not have keys A to F which are indispensable for hexadecimal designation. Effective range of decimal constant: 0 to 255 (Example) FUN50 255 (FFH → ARL) (Decimal 255=hexadecimal FFH)
No. of bits		0~255	Used for FUN72 and FUN73. (Example) FUN72 5 (AR is masked by 5 bits from the left.)
Argument		0~63	Used as an argument of FUN08 (AJMP), FUN09 (AJEND), FUN42 (CALL), FUN43 (SB), FUN93 (INT) and FUN97 (MODE). (Example) FUN08 63 (AJMP63)

Table 2-3 Function of Special Internal Output (1/4)

No.	Function	Description
M 960	All outputs OFF	When M960 is switched ON by the program, all external output signals go OFF except for the RUN contacts. Suppose that an error program is written. (The X0 and X1 are not closed simultaneously during normal operation.) As a result, M 960 is switched ON. In this status, the PC judges that there is a system error and it switches all output signals OFF.
		However, program operation does not stop. ○ Eliminate the cause of the error and turn on power supply again.
M961	Initializing re- tentive memory	To initialize retentive memory automatically at the start of operation, turn M967 ON for a single scan. O In the sysytem shown in the figure, retentive memory is or is not initialized depending on whether X0 is ON or OFF at the start of operation. XO: ONRetentive memory is initialized when power is switched ON. No Retentive memory is not initialized when power is switched ON. Retentive memory is initialized only at the start of operation. During operation, it is not initialized even if M961 is switched ON. M961 coil operates only when it is written in step 4. It is invalid when it is weitten in any other step.

Table 2-3 Function of Special Internal Output (2/4)

		able 2.3 Tunction of Special inc	
No.	Function	10 mg (20 mg) (20 mg)	Description
M962	Cyclic oscillation		t: Period of one scan (scan time) Signal goed ON/OFF alternately for each scan.
M963	0.1 sec clock	M963	M964 0.5 sec
M 964	l sec clock	0.1 sec	1 sec
M 965	10 sec clock	M 965	M966 30 sec
M 966	1 min clock	10 sec	1 min
M 969	10 ms clock	5 ms 10ms	
M 967	ON for a single scan after start of operation	Start of operation One scan	To initialize all volatile memories at the start of operation, use M967 in combination with M961. To initialize memory individually, use M967 alone.
M 968	1000-scan cycle	1000×t	t: Scan time ON once every 1,000 scans. Used for measuring scan time.

Table 2-3 Function of Special Internal Output (3/4)

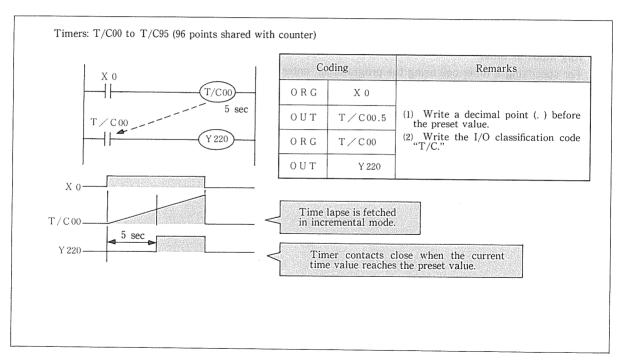
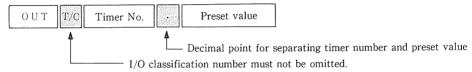

No.	Function	Description					
W M 970	System error factor	If system error occurs (when ERR lamp comes on), an error code within 0 to 65535 is displayed. Details are given number system Error codes in section 7. The code cannot be cleared by turning on power supply again.					
W M 972	Program counter at oc- currence of system error	If system error, occurs, count on the program counter of microprocessor is displayed.					
W M 974	Designation of read address at occurrence of system error	If quotom owner, and the state of the state					
M976	Data readout at occur- rence of system error	If system error occurs, data at the address designated by WM 974 is presented in M976.					
M977	Registration of system ROM sum	System ROM sum appears in WM978 only when this I/O is ON upon turning on power supply.					
W M978	System ROM sum						
M 989	System attribute	Systm attribute appears in each bit of b7 to b5. Bits b4 to b0 are undefined. Bit					

Table 2-3 Function of Special Internal Output (4/4)

No.	Function	Description
W M 980	Syntax error factor	If syntax error is detected in the check specified by a peripheral or in the check before start of operation, an error code within 0 to 65535 is displayed. The code cannot be cleared by turning on power supply again.
W M 982	Scan time	The latest scan time is indicated in steps of 10 ms, though the first scan is shown as 65535 ms. Indication contains an error of ± 10 ms. Unit is millisecond (ms). (Indicated as $0, 10, 20, \text{ms} \cdots$)
W M 984	Max. scan time	Of scan times after the start of operation, the maximum time is displayed in steps of 10 ms, though the first scan is shown as 0 ms. Indication contains an error of ± 10 ms. Unit is millisecond (ms). (Indicated as 0, 10, 20, ms·····)
M990	Normally ON	Always ON irrespective of run/stop status.
M991	ON during run	ON during run and OFF during stop

M986 through M988 are for functional expansion and unused (undefined) by the system.

External in- puts(X), exter- nal outputs(Y)	Internal outputs(M)	Timer(T)	Counter(C)	Instruction words and I/O numbers	Arithmetic register
16	18	27	26		



1. Kinds of timer

- (1) On-delay timers are used. In the above sequence, the timer coil T/C00 is excited when input X0 turns ON. After 5sec, the timer contacts close. There are many timers with "a" and "b" contacts. They are used for generating a sequence in the PC.
- (2) The same data area is shared by timers and counters, a total of 96 points (T/C00 throuh T/C95). A number used for a counter cannot be used for a timer.

2. Key input of timer

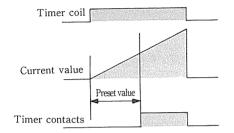
For specifying a timer coil using the programmer, enter the timer number (1 or 2 digits), a decimal point (.) as a separator and the preset value in this order.

3. Time base

The timers have two time bases: 0.01 and 0.1 sec. Time base is automatically selected according to the key-in method.

Time base	Key-in method	Preset value range	
	OUT T/C Timer No. 6 3 · 5	T/C 0~ 9···0.1~999.9 sec	
0.1sec	63.5sec OUT T/C Timer No. 7 7 0	T/C10~95 $\begin{cases} 0.1~999.9 \text{ sec} \\ 1~999.9 \text{ sec} \end{cases}$	
	770.0 sec		
0.01sec	OUT T/C Timer No. 0 . 5 5	T/C $0\sim95\cdots0.01\sim9.99$ (settable only in 3 digits)	

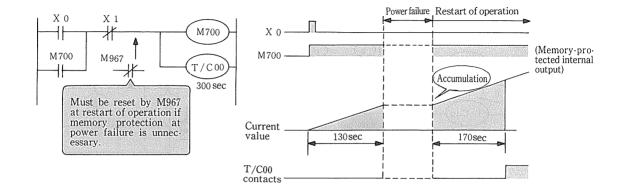
4. Preset value


Up to 10 timers/counters (T/C0 to T/C9) can be set using 4 digits (except for the timer adopting 0.01 sec time base which must be set using 3 digits).

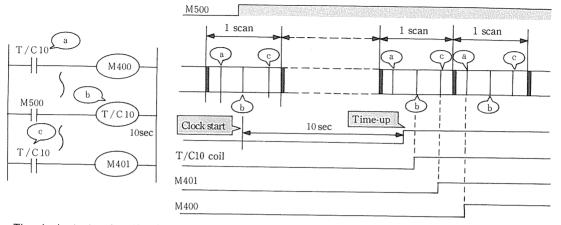
Up to 86 timers/counters (T/C10 to T/C95) can be set using 3 digits.

5. Current value

Each timer operates in the incremental mode. It starts timing when the timer coil is energized. When the current value reaches the present value, the timer contacts close.


When the timer coil is deenergized, the current value is reset to 0.

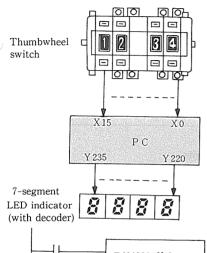
NOTE


The current value of each timer is retained in memory even if power failure occurs or when power supply is turned off. When combining the timer with the retentive internal output, an accumulation timer can be composed.

[Example]

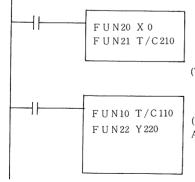
6. Contacts operation timing and accuracy

[Example]


The clock starts when the timer coil is energized (time point (b)). When the coil instruction is executed after time-up the output contacts close.

	Timer starts by other th	nan external input signal	Timer starts by external input signal.		
Condition	Timer contacts (a) before coil	Timer contacts (b) after coil	Timer contacts (a) before coil	Timer contacts (b) after coil	
Timer accuracy	+2 scans	+1 scan	Input fethch delay (4 ms sin- gle scan filter) +2 scans	Same as left + 1 scan	

Total timer accuracy


 $\begin{array}{c} \text{Preset time } +2 \text{ scans} \\ \text{- time base (0.01 sec} \\ \text{or 0.1 sec)} \end{array}$

7. Handling timer preset value and current value in arithmetic instructions in application

The preset value of a timer can be changed by using the thumbwheel switch, and the current value of a timer can be read on the 7-segment LED indicator. An example of program is shown below. The table below lists the number assignment when using the timer preset value and current value in the arithmetic operation.

Segment	Assignment No.	Remarks
Current value	T/C100~T/C195	Add 100 to timer coils T/C00 to T/C95.
Preset value	T/C200~T/C295	Add 200 to timer coils T/C00 to T/C95.

X0 through X15(thumbwheel switch data) \rightarrow AR

 $AR \rightarrow timer T/C$ preset value

(T/C 210 programmed for preset value)

Current value of T/C10 timer \rightarrow AR

(T/C110 programmed for current value) A $R \rightarrow Y 220 \sim Y 235$

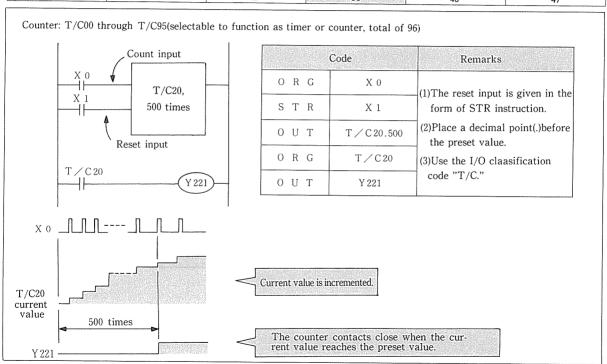
The timer preset value can be changed by using the thumbwheel switch.

The timer current value is read on the indicator.

The timer preset value and current value are data to be processed in blocks of 16 bits as shown below.

Segment	Kind of timer	Data to be processed by arithmetic instruction
Preset value and	0.1 sec timer	b ₁₅ b ₀ BCD 4 digits The least significant digit represents 0.1 sec order. Indicates 264.5 sec.
current value	0.01 sec timer	F 0 5 5 BCD 3 digits The most significant digit stands for "F" (0.01 sec timer). The least significant dight represents 0.01 sec order.

Α


The memory device (EEPROM) of the E series does not require a battery. So it is easy to maintain.

The EEPROM does not require battery backup for program. Hence, program will not be lost because of the end of useful life or abnormal discharge of a battery, and there is no need for tiresome battery replacement. Despite being a ROM, the EEPROM allows a program to be written and erased electrically like a RAM without using a ROM writer or UV eraser.

Compare the EEPROM with the already popular RAM and EPROM for an easier understanding.

Kind of memory	Program write	Program erase	Program protec- tion reliability	Program store		
EEPROM	Can be written electrically	Can be erased electrically	Intermediate	Battery unnecessary		
EPROM	ROM writer necessary	UV eraser required	High	Battery unnecessary		
RAM	M Can be written Can be electrically electri		Low	Battery necessary		

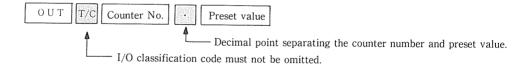
External in- puts(X), exter- nal outputs(Y)	Internal outputs(M)	Timer(T)	Counter(C)	Instruction words and I/O numbers	Arithmetic register
16	18	27	36	40	47

1. Kind of counter

(1) An up-counter is used. In the above sequence, the counter T/C20 counts ON/OFF cycles of input X0. When the count reaches 500, the counter contacts close.

The counters can provided with any number of "a" and "b" contacts.

They are used for generating sequences in PC.


(2) Timers and counters share the same data area. There are 96 timers/counters in total (T/C00 through T/C95).

Once a T/C number is assigned to a timer, it cannot be reused for a counter.

(3) When the reset input turns ON, the counter is reset and the current to 0.

2. Counter key input

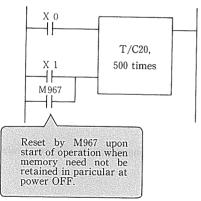
- (1) Program the count input and reset input in this order. Reset input must be programmed by an STR instruction.
- (2) A counter preset value can be entered in the same way as for a timer.

3. Preset value

Up to 10 timers/counters (T/C0 to T/C9) can be set using 4 digits.

Up to 86 timers/counters (T/C10 to T/C95) can be set using 3 digits.

4. Current value


The current value of each counter is incremented by 1 (one) whenever the count input turns from OFF to

ON. The counter contacts close when the current value reaches the preset value.

When the reset input turns ON, the current value is reset to 0.

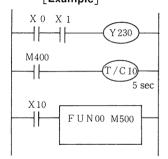
The current value of the counter is retained in memory even if power in turned OFF.

[Example]

If the retentive data is unnecessary, use the special internal output M967, which turns on a single scan at start of operation. Program as shown at left.

5. Handling the counter preset value and current value in the arithmetic instructions.

When using a combination of counter preset value and current value in arithmetic instructions, the current value must be equal to the counter coil number (T/C0 throuh 95) incremented by 100, namely T/C100, to T/C195. The preset value must be equal to the coil number incremented by 200, namely T/C200 to T/C295.

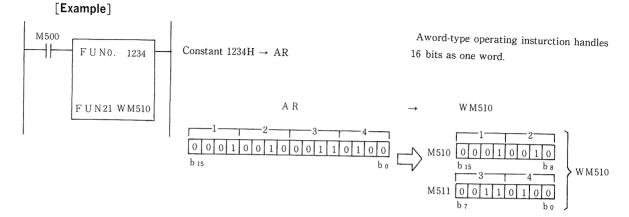

The counter preset value and current value are 16-bit data (4-digit BCD value) and processed as shown in the table below.

Item	Assingnment No.	Data to bi processed by arithmetic ininstruction
Current value	T/C100 through T/C195 (equal to counter coil numbers T/C0 to T/C95 incremented by 100)	b 15 b 0 4-digit BCD Indicates 3456 times.
Preset value	T/C200 through T/C295 (equal to counter coil numbers T/C0 to T/C95 incremented by 200)	

puts(X), exter- nal outputs(Y)	Internal outputs(M)	Timer(T)	Counter(C)	words and I/O numbers	Arithmetic register
16	18	27	36	40	47

Instruction can be in the form of bits, words and bit data handled as words.

1. Bit-type operating instruction [Example]



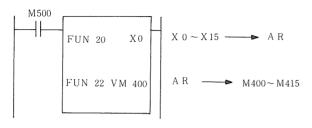
Eutomal

A bit-type operating instruction affects only a single set of contracts (via coil) as shown in the figure.

The basic instructions are all bit-type instructions.

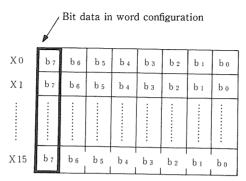
2. Word-type operating instruction

- (1) In the above circuit, the constant 1234H is stored in the AR (arithmetic register) by "FUNO. 1234." The AR data is output to the 16 bits of M510 and M511 by FUN21 WM510."
- (2) When an internal output number is specified by a word-type operating instruction, it is handled as 16-bit


Exam	ple								
		_ MS	B (mo	st sig	nifica	nt bit)			W M 510
M510	0	0	0	1	6	0	1	0,	(b ₁₅ ~ b ₈)
M511	6	0	1	1	0	1	0	0.	(b7~ b0)
M512									
	:	:	:	:		:			LSB (least significant bit)
	b 7		b 5	b 4	bз	b 2	b 1	bо	į

data in the following way. The 8-bit data of the specified internal output (M510 in the above example) is taken as b8 through b15, while that of the next internal output (M511) Is taken as b0 through b7.

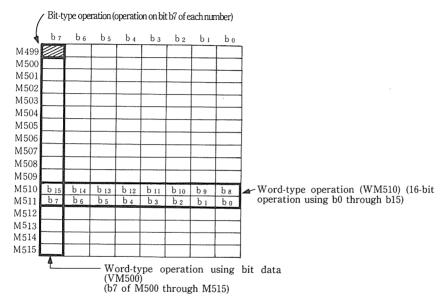
(3) The timer and counter preset values, current values and constants (0000H to 9999H) are all 16-bit data. So they are directly processed as a word when specifying their numbers by a word-type operating instruction.


3. Handling of bit-type data as a word

[Example]

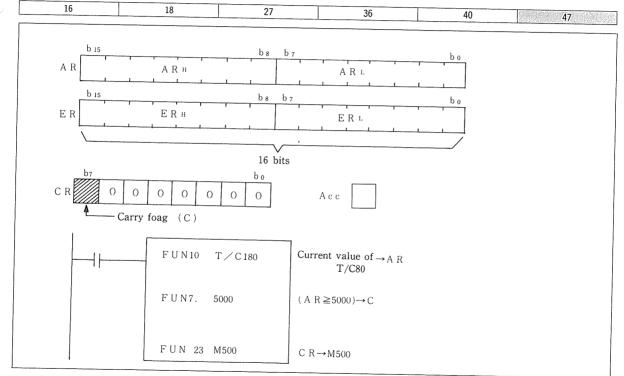
An instruction that treats 16 one-bit data (X0 to X15) as a single word is called a "word-type instruction for bit data."

- (1) In the above sequence, the 16-bit data of X0 through X15 is stored in the AR by the "FUNO20 X0" instruction, and the data in the AR is output to M400 to M415 by the "FUN22 M400" instruction.
- (2) When external I/O or internal output number is specified by a word-type instruction for bit data, only the most significant bit (b7) of the 16 points (namely, 16 bits) starting from the specified No. (X0 and M400 in the above example) is handled as a single-word data.


Example of external input (Word configuration remains the same in case of external output and internal output.)

(3) Word-type instructions for bit data are used for connecting the thumbwheel switch, etc. as an external input device for storing BCD data.

They are also used to output data in the AR to an external output terminal. (See the section "Handling of the timer preset value and current value by arithmetic instructions.")


4. Summary of instructions

[Example]

- (1) Internal outputs are all 8 bits long. In word-type operation, a total of 16 bits in the specified internal output number and the next number are handled. This data is given an element code WM. WM510 in the above example consists of M510 and M511 (b0 to b15).
- (2) In the word-type operation using bit data, the most significant bit (b7) of sixteen 8-bit data starting from the specified number is handled as a single-word data. This word data is made up of the 16 bits in the vertical direction. Hence it is given an element code VM.

External in- puts(X), exter- nal outputs(Y)	nternal utputs(M)	Timer(T)	Counter(C)	Instruction words and I/O numbers	Arithmetic register
					ART COMPANY OF THE PROPERTY OF

- 1. The registers of EM-II series come in 4 kinds below.
- (1) AR: Arithmetic Register used for instructions. It has a 16-bit configuration.
- (2) ER: Expansion Register used for storing upper word resulting from multiplication and remainder of division. It has a 16-bit cofiguration.
- (3) CR: Carry Register. Carry flag (C) turns to "1," for example when the condition for comparison is satisfied. Bits b0 to b6 are always "0."
- (4) Acc: 1-bit register which automatically changes along with execution of a basic instruction such as ORG or AND.
- 2. Data in the AR, ER and CR are cleared every time scan starts and they change in response to the processing of arithmetic instructions.

1 PRINCIPLE OF PC

2 INPUT/OUTPUT AND NUMBERS

3.1 Basic Instructions

3.2 Application Instructions (I)

3.3 Arithmetic Instructions

3.4 Application Instructions (II)

Table 3-1 Basic Instructions

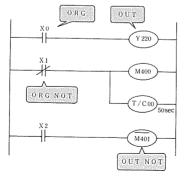
				sp	Cha	nge	in re	giste	r Refer
Instruction	Symbol	Function	Coponent	No. of words	AR	ER	С	Ace	ence page
ORG	<u> </u>	Connection of normally open contacts ("a" contacts) to bus	V V M (0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0	0		ı	51
ORG NOT		Connection of normally closed contacts ("b" contacts) to bus	X, Y, M, T/C 0~95	1	0	9	0	1	51
STR		Start of branching normally open contacts ("a" contacts)	X, Y, M	1	0		0	1	57
STR NOT	 	Start open branching normally closed contacts ("b" contacts)	T/C 0~T/C95	1		0	6	1	57
AND	<u> </u>	Serial connection of normally open contacts ("a" contacts) X, Y, M					0	1	53
AND NOT	-#-	Serial connection of normally closed contacts ("b" contacts) T/C 0~T/C95			0	9	0	1	53
OR	⊣낻	Parallel connection of normally open contacts ("a" contacts) X, Y, M		1	0		0	1	55
OR NOT	#	Parallel connection of normally closed contacts ("b" contacts)	T/C 0~T/C95	1	•	0	0	1	55
AND STR		Serial Connection of logic block		1	•	ø	0	1	57
OR STR		Parallel connection of logic block	None	1	9	0	8	I	57
OUT	-0-1	Output of calculation result $ \begin{array}{c} Y,M \\ T/C 0 \sim T/C95 \end{array} $ (with preset value)		1	0		•	8	51
OUT NOT	- O -	Inverted output of calculation result Y, M		1	0	0	•	6	51

^{•:} Register remains unchanged. I: Register changes.

ORG, ORG NOT OUT, OUT NOT

AND AND NOT

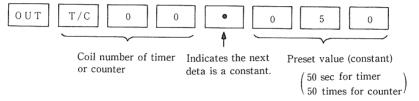
OR OR NOT


STR STR NOT

OR STR AND STR

Examples

2020333			
51	r.r		
51 53	55	57	61
			01


Inotacotica	Instruction Symbol Meaning Function		His and the second of the seco			Change in register				
mstruction			Component		AR	ER	С	Acc		
ORG	HHE	Origin	Connection of normally open contacts ("a" contacts) to bus	V V V C (0	1	0		•	‡	
ORG NOT		Inverted origin	Connection of normally closed contacts ("b" contacts) to bus	X,Y,M,T/C0~95		•	6		1	
OUT	-0-	Output	Output of calculation result	Y, M T/C0~T/C95 with preset value	1			0		
OUT NOT	-01	Inverted output	Inverted output of calculation result Y, M		1		•	0	0	

Code	Remarks
O R G X 0 O U T Y 220	Output in connection with bus
ORG NOT X 1 OUT M 400 OUT T/C00 .050	Tmier (coil) Tmier (preset value)
ORG X 2 OUT NOT M 401	Inverted output

Element codes X, Y and M need not be keyed in.

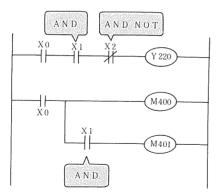
- 1. The ORG and ORG NOT instructions are used for the contact next to the bus (at the head of circuit).
- The OUT instruction drives each coil of external output (Y), internal output (M), timer (T) and counter (C).
 This instruction is not used for external input (X). The OUT NOT instruction is used for inverted output.
- 3. More than one OUT instruction (multiple outputs) can be used in parallel.
- 4. A preset value (constant) is required after an OUT instruction for a timer or counter coil.

After OUT instruction, the element number of timer/counter coil (T/C00 through T/C95), period ". " for indicating a constant and preset value must be entered in this order. This occupies a single step.

ORG, ORG NOT OUT, OUT NOT

AND NOT

OR OR NOT


STR STR NOT

OR STR AND STR

Examples

51	53	C.C.		T
J	133	55	57	61
			<u> </u>	1 01

Instruction	Symbol	Meaning	Function	Component	o. of words	A D	r n		
			PURTER TO THE TAXABLE PROPERTY.	and some of the local	N N	AK	ER	U	Ac
AND		And	Serial connection of normally open contacts ("a" contacts)	X, Y, M	1	•		•	1
AND NOT	#	Inverted and	Serial connection of normally closed contacts ("b" contacts)	T/C 0~T/C95	1	0	0	0	1

Remarks		Code	
	Χ 0		ORG
Serial contacts	X 1		A N D
Serial contacts	X 2	NOT	AND
	Y 220		OUT
	X 0		ORG
	M 400		OUT
Serial contacts	X 1		AND
Cascaded output	M401		OUT

Element codes X, Y and M need not be keyed in.

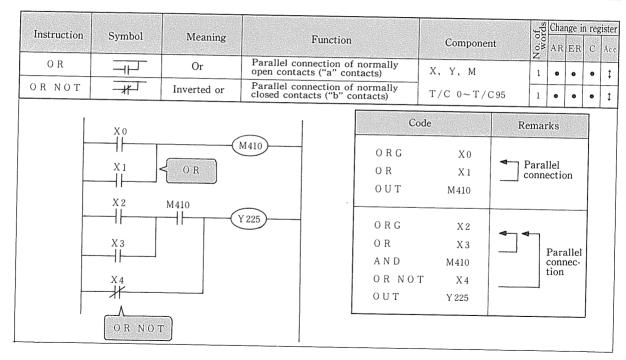
- 1. The AND and AND NOT instructions are used for connecting a single set of contacts in series to the existing circuit.
- 2. Driving another coil via a contact set after OUT instruction is called a cascaded output (M400 and M401 in the figure above). Cascaded output can be repeated any number of times.

NOTE

It is recommended not to use more than 8 contact sets horizontally nor more than 26 lines vertically in a circuit, although the number of series contacts and cascaded outputs is not limited. This is because of functional restrictions on the portable graphic programmer (PGM-GPE2) and printer.

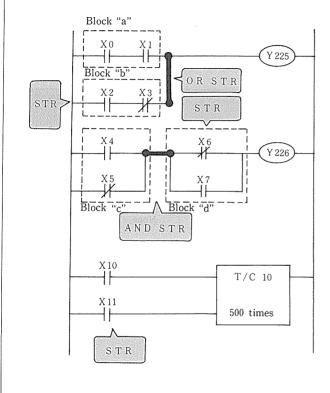
ORG, ORG NOT OUT, OUT NOT

AND AND NOT

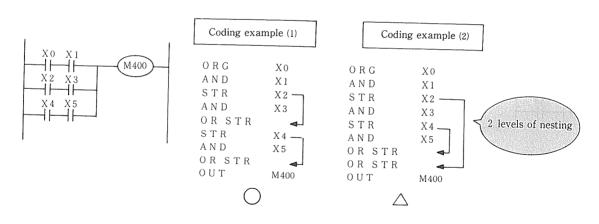

OR OR NOT

STR STR NOT

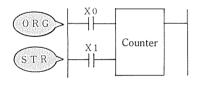
OR STR AND STR

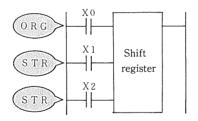

Examples

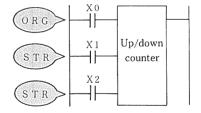
- 1	· · · · · · · · · · · · · · · · · · ·				
	51	53	55	57	61


ORG, ORG NOT OUT, OUT NOT	AND AND NOT	OR OR NOT	STR STR NOT	OR STR AND STR	Examples
51	53	55	5	7	

Instruction	Symbol	Meaning	Function		of rds	Cha	nge ii	ı regi	iste
			T direction	Component	No. W	ΑR	ΕR	C	Acc
STR	HH	Store	Start of branching normally open contacts ("a" contacts)	X, Y, M	1	•		•	<u></u>
STR NOT	 	Inverse of store	Start of branching normally closed contacts ("b" contacts)	T/C 0~T/C95	1	0	•	0	
AND STR		And store	Serial connection of logic block		1	•	•		‡
OR STR		Or store	Parallel connection of logic block	None	1	•		•	-




Code		Remarks
ORG	X 0	Block "a" is
AND	X 1	j programmed.
STR	X 2	Block "b" is
AND NOT	Х3	programmed.
ORSTR		a + b • Blocks "a" and "b" are
OUT	Y 225	combined by OR STR.
ORG	X 4	Block "c" is programmed
ORNOT	X 5	j programmed
STR NOT	X 6	Block "d" is programmed.
O R	X 7	d programmed.
AND STR		c•d • Blocks "c" and "d" are
OUT	Y 226	and d are combined by AND
ORG	X 10	STR.
STR	X 11	
OUT T/C	10	
	500	


- 1. A circuit with two or more contact sets connected in series is called a serial circuit block. When connecting series circuit blocks in parallel, use the STR or STR NOT instruction to begin the branch, and the OR STR instruction to end the branch.
- 2. A circuit with two or more contact sets connected in parallel is called a parallel circuit block. When connecting parallel circuit blocks in series, use the STR or STR NOT instruction to begin the branch, and the AND STR instruction to end the branch.
- 3. The circuit shown below can be programmed according to either coding example (1) or (2).

- (1) Even when many parallel blocks are to be used, each circuit block is connectable to the previous one by specifying the OR STR instruction. The number of connections is not limited. (See coding example (1))
- (2) The OR STR instruction can be used in the batch mode. In this case, however, the number of interations of the STR (STR NOT) instruction is limited to 7 times (up to 7 levels of nesting). (See coding example (2).)
- (3) The same rule applies to the AND STR instruction as well.
- (4) If the STR or STR NOT is not used in correct combination with AND STR (or OR STR), it is detected as a syntax error.
- 4. The STR or STR NOT instruction does not correspond to the AND STR (or OR STR) instruction if the counter, up/down counter, shift register or similar circuit has two or more input conditions.

ORG, ORG NOT OUT, OUT NOT

AND AND NOT OR OR NOT STR STR NOT OR STR AND STR

Examples

	51	53	55		57	61
Circuit	Confid	guration	Prograi	n	NEW CONTRACTOR	
	A Company of the Comp		Instruction cod	le Data		Explanation
cuit	X0 X1	Y2 Y2	ORG	X 0		· First the parallel circuit
Parallel-to-serial circuit	X0 X1 Y220	X 2 X 3 Y 220	AND	X 1	a	of block "a" and then the serial circuit of block "b"
-seria			OR	Y 220		are programmed.
llel-to	Block "a"	Block "b"	AND	X 2	1	
Para	Block a	DIOCK D	LON DNY	Х 3	b	
			OUT	Y 220	J	
			ORG	X 0)	• The circuit is divided into
cuit	X0 X1 X	2 Vo	AND NOT	X 1	a ,	blocks "a" and "b" which are programmed sepa-
Serial-to-parallel circuit		2 X 3 Y 220	STR	X 2)	rately.
arall		220	AND	X 3		
-to-p		X 4	OR	Y 220	Ĭ	
erial	Block "a", Blo	ck "b" ,	OR	X 4	J	
S			AND STR		a · b	· Blocks "a" and "b" are
			OUT	Y 220		combined by AND STR.

Circuit	Configuration	Program		Explanation
Circuit	Comparation	Instruction code	Data	Explanation
		ORG NOT	X 0	• Block "a" is programmed.
	F) 1 (0.1)	AND	X 1	a J
circuit	Block "bl"	STR	X 2	• Block "b1" is program- med.
	X0 X1 X2 X3 (Y220)	AND NOT	X 3	b1 J
ralle	X4 Y 220	STR NOT	X 4	• Block "b2" is program-
to-pa	Block "b2"	AND	Y 220	b ² med.
Serial-to-parallel	Block "a" Block "b"	OR STR		b 1 + b 2 • Blocks "b1" and "b2" are combined by OR STR.
	1	AND STR		Blocks "a" and "b" are
		OUT	Y 220	combined by AND STR.

Circuit	Configuration	Program			
Circuit	Companduon	Instruction code	Data	Translation (Co.)	Explanation
		ORG	X 0	Ì	• First block "a1" and then
	Block "al" Block "bl"	AND	X 1	a l	block "a2" are program- med.
Serial connection of parallel circuits	X0 X1 X4 X5	STR	X 2)	
l cir	X2 X3 X6 X7 (Y220)	AND NOT	Х 3	a 2	
ıralle		OR STR		a 1 + b 2	· These blocks are com-
of pa	Diock 55	STR NOT	X 4	J. J.	bined. by OR STR.
tion	Block "a" Block "b"	AND	X 5	b i	 Blocks "bl" and "b2" are programmed in the same
nnec		STR	X 6	,)	way as above.
al co		AND	X 7	b 2	
Seria		OR STR		b1+b2	
		AND STR		a · b	· Blocks "a" and "b" are
		OUT	Y 220		combined by AND STR.

C:	cuit	Configuration	Progran	n	Explanation
C11	cuit	Comgutation	Instruction code	Data	Explanation
			ORG	M 400	
		M400 T00 (M400)	AND NOT T/C	00	
		021	OR	X 0	Xo
	cuit	M400	оит	M 400	2sec 2sec
	t cir	T 00) 2 sec	ORG	M 400	2560
cuit	One-shot circuit	M400 T 00 (Y 220)	оит т/с	00.002	Y 220
n cir	On		ORG	M 400	
ation		l I	AND NOT T/C	00	
pplic			OUT	Y 220	
ter a			ORG	X 0	
coun		X0 M400 (T00)	AND NOT	M 400	
Timer/counter application circuit	iits	M400 100 sec	OUT T/C	00.100	X ₀
ļ:Ē	circuits	C 60	ORG	M 400	X1
	nter	X1 90 times	STR	X 1	100sec T 00 4-4
	l cou	T 00 (M400)	OUT T/C	60.090	9,000 sec
	r anc	C 60	ORG T/C	00	Y 220
	Timer and counter	Y 220	OUT	M 400	Developshing registe
		•	ORG T/C	60	
			OUT	Y 220	
6	54 —				· · · · · · · · · · · · · · · · · · ·

Circui	it Configur	ation	Progra	m	
	and the second s	520.24 1	Instruction code	Data	Explanation
			ORG	X 0	
بـ ا	X ₀	(T00)	OUT T/C	00.010	
circuit		100 10sec	ORG	Y 220	<u>X</u> 0
delay c	Y 220 X 0	TOI	AND NOT	X0	T 00
unt F de		T01) _{5sec}	OUT T/C	01.005	T 01
ON/OFF d	T00 T01	Y 220)	ORG T/C	00	Y 220
	Y 220	1 220	O R	Y 220	10sec 5sec
ppiic			AND NOT T/C	01	11 17 12
			OUT	Y 220	
uit	0 T01		ORG	X0	
		T00 l sec	AND NOT T/C	01	0
circuit	Т00		OUT T/C	00.001	T 00
er cir		(T01) 3 sec	ORG T/C	00	T 01
Flicker		3 800	OUT T/C	01.003	220
		Y 220	OUT	Y 220	l l lsec 3sec
ĺ		_			

1 PRINCIPLE OF PC

2 INPUT/OUTPUT AND NUMBERS

3 PROGRAMMING

3.1 Basic Instructions

3.2 Application Instructions (I)

3.3 Arithmetic Instructions

3.4 Application Instructions (II)

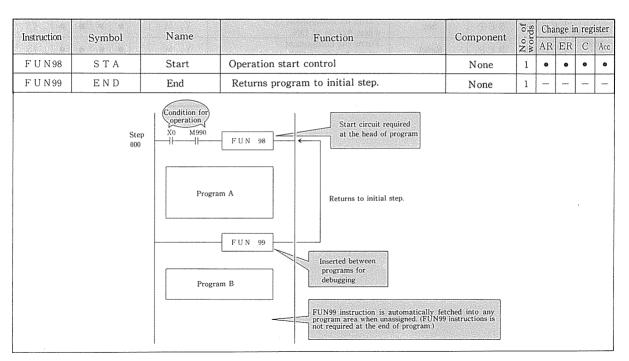
Application Instructions (I) (1/2)

Classification	Instruction	Symbol	Name	Function	Component	No. of words	Change in registe			ister	Reference
							AR	ER	С	Acc	page
Edge	FUN00	DIF	Rising edge	Detects rising edge ()of signal	М	1	0	•	0	0	73
	FUN01	DFN	Trailing edge	Detects trailing edge ()of signal.	М	1	0	0	0	0	73
Step process	F U N 02	ΙF	If	Set/reset	None	1	0	0	0	•	75
	F U N 03	IFR	If reset	Step process		1	8	0	•	0	77
Master control	F U N 04	MCS	Master control	Sets common serial contacts.	None	1	0	0	0	0	84
	F U N 05	MCR		Releases common serial contacts.		1	0		0	0	84
Jump	FUN06	JMP	Jump without addressing	Skip program up to corresponding JEND.	None	1	0	0	0	0	87
	FUN07	JEND				1	0	0	6	0	87
	FUN08	АЈМР	Jump with addressing	Jumps to AJEND at corresponding address number.	Address No. (O to 63)	2	0	0	0	0	87
	F U N 09	AJEND				2	9	0	9	0	87
Branch	F U N 28	BRANCH	Branch	Stores Acc.	None	1	0	0	0	0	95
	F U N 29	RETURN	Return	Returns stored Acc.	None	1	0	9	0	\$	95
Up/down counter	F U N 40	UDC	Up/down counter	Up/down counter	V M (Note)	1	0	0	0	0	92
NOP	F U N 41	NOP	No operation	Nothing occurs.	None	1	0	0	0	0	102
Latch	F U N 45	LATCH	Latch	Resetting priority latch	М	1	•	0	0	0	97

Application Instructions (1)(2/2)

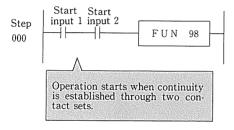
						Fords	Change in regist				Reference
Classification	Instruction	Symbol	Name	Function	Component	No. of	ΑR	ER	С	Acc	page
Shift register	FUN47	SFR	Shift register	16-bit shift register	V M (Note)	1	0	0	0	0	100
Set and	FUN88	SET	Set	Turns on component when Acc is at ON.	Y, M	1	0	0	0	0	75
reset	FUN89	RES	Reset	Turns off component when Acc is at ON.	Υ, Μ	1	0	0	0	0	75
Start and	FUN98	STA	Start	Operation start cntrol	None	1	0	9	0	0	70
end	F U N 99	END	End	Returns program to initial step.	None	1		-		-	70

•: Register remains unchanged

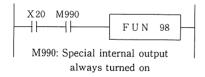

1: Register changed
-: Register cleared

(Note) VM represents vertical 16 bits.

In the example below, VM is made up of 16 most significant bits of M400 throgh M415.


M400	b7	b 6	b 5	b4	bз	b 2	bı	bo
M401	b7	b ₆	b 5	b4	Ъз	b 2	b ₁	bo
M415	b7	b ₆	b 5	b4	bз	b ₂	bı	bo
•	1	-V M	1400					

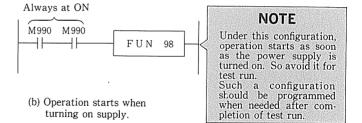
Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102



1. Start circuit

Operation start input is to be specified through a program. This means that start circuit must be written at the head of any program. (There is no restriction on number.)

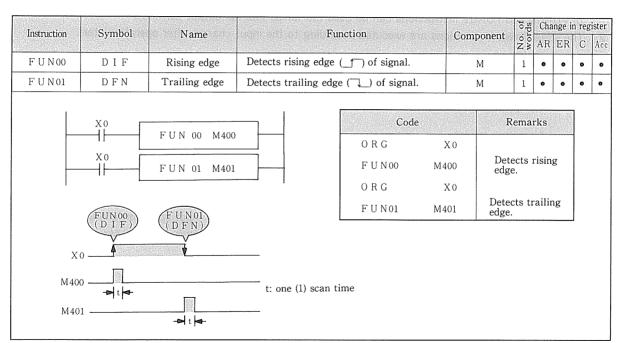
Example of start circuit

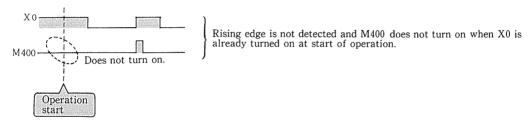


(a) Operation starts with external input X20 at ON and stops at OFF.

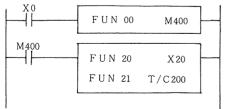
Condition for operation

Continuity is established across both start inputs 1 and 2, and program does not have an error.


("b" contacts) specifiable)


2. End

- (1) The FUN99 instruction is not required usually. However, it is recommended to insert this instruction for separating programs at the time of test run since operation can be checked more easily. Program is executed from step 000 to FUN99 instruction.
 - Once operation has been confirmed, delete the FUN99 instruction.
- (2) After completely clearing a program, all user memories are written with the FUN99 instruction (through indication is not provided).
 - Since the FUN99 instruction is assumed in an area not yet programmed, there is no need for writing that instruction at the end of a program.


Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102

- The FUN00 (DIF) instruction is used to detect the rising edge of an input signal (status change from LOW to HIGH), and the FUN01 (DFN) instruction is used to detect the trailing edge of the signal (status change from HIGH to LOW). These instructions are programmed in combination with an internal output (M) so that the specified internal output (M) turns on only for 1 scan time when the edge is detected. Any number of FUN00 and FUN01 instructions can be used (so far as internal output permits).
- 2. The edge detect instructions are executed according to the input change after operation start.

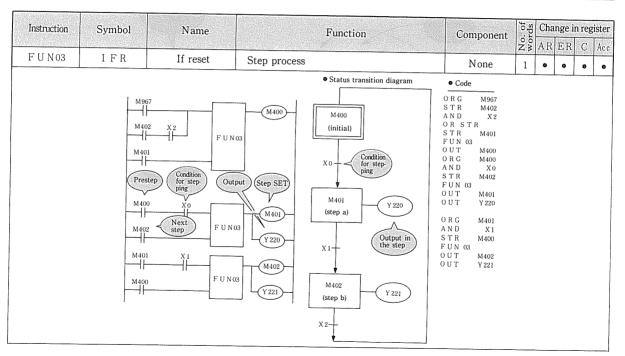
3. The edge detect function is effective for word LOAD, COMPARE and the like instructions, because they can be executed only when input condition changes.

(For instance, this function is used as a startup condition of arithmetic instructions.)

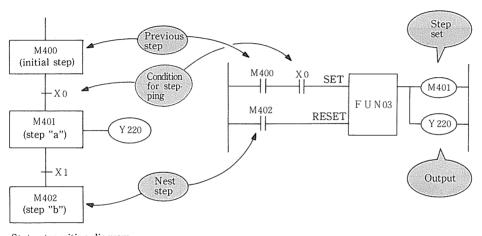
Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	1	

Instruction	Symbol	Name	Function	Component	No. of words	Cha	inge i	n reg	ister
			1 direction	Component	No.	AR	ER	С	Acc
FUN02	IF	If	Set/reset	None	1			0	9
FUN88	SET	Set	Turns on component when Acc is at ON.	Y, M	1	•			
FUN89	RES	Reset	Turns off component when Acc is at ON.	Y, M	1	•		•	
		7	Set X0 ORG FUN02 Reset X1 ORG Y220 ORG FUN02						
		Xı	ORG	X0 Y 220 X1 Y 220					

- 1. Instructions FUN02 and OUT are combined and used as the SET instruction.


 Instructions FUN02 and OUT NOT are combined and used as the RESET instruction.
 - OON status is held under SET input and OFF status is held under RESET input.
 - O Any other program may be inserted between SET coil and RESET coil. The program written last is given the highest priority.
 - O A keep relay can be composed when combining a FUN02 instruction with the memory-protected internal output.
- 2. FUN88 is the SET instruction. It provides the same function as a combination of the FUN02 and OUT instructions.

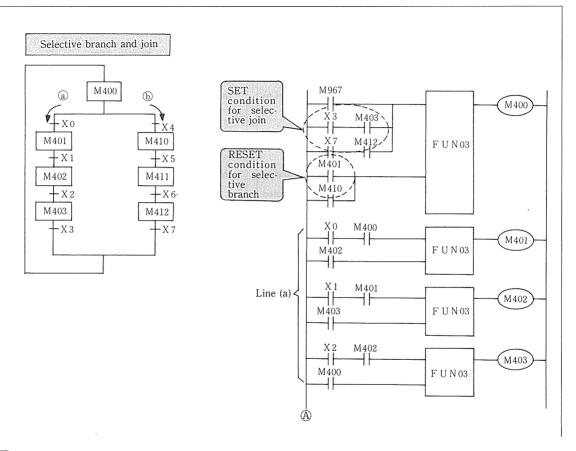
FUN89 is the RESET instruction. It provides the same function as a combination of the FUN02 and OUT NOT instructions.

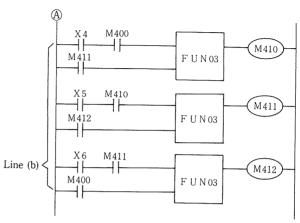

Each of FUN88 and FUN89 instructions requires fewer words than the corresponding combination of instructions.

If an output coil is programmed using both FUN88 and FUN89 instructions, a syntax error (double coil error E.) occurs, but operation is continuable.

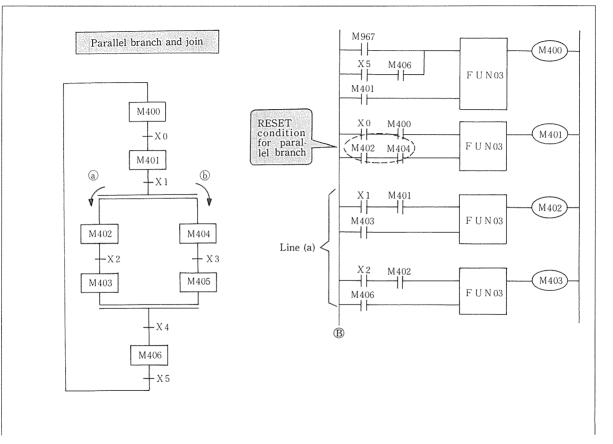
Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102

1. FUN03 is the step process (sequential control) instruction. Set input and reset input are provided. A step process program can be created in the regular format using the status transition diagram.




Explanation of operation

- (1) If step condition X0 is set to ON in the initial step (M400), step "a" (M401) turns ON and Y220 is output.
- (2) Y200 holds its output even when step condition X0 is set to OFF.
- (3) When step condition X1 is set to ON, step "b" turns ON and Y220 is set to OFF.
- (4) Even when step condition X1 is set to ON in the initial step (M400), step "b" (402) won't turn ON. All steps are executed in correct sequence.


Progromming method

- (1) To program a FUN03 SET input, the internal output (M400) specifying the previous step is ANDed with the condition for stepping (X0) .
- (2) For FUN03 RESET input, the internal output (M402) specifying the next step is programmed.
- (3) After FUN03 the internal output (M401) specifying the current step and output (Y220) are programmed.

- (1) Upon start If operation, step M400 (initial status) turns ON.
- (2) When input X0 turns ON, line (a) is executed. When input X4 turns ON, line (b) is executed. Line (a) or (b) is selected according to which of inputs X0 and X4 turns ON earlir.
- (3) In line (a), steps involving M401, M402 and M403 are executed in this order. When stepping condition input X3 turns ON, control returns to the step M400.
- (4) In line (b), steps involving M410, M411 and M412 are executed in this sequence. When stepping condition input X7 turns ON, control returns to the step M400.

- (1) Step M400 (intial status) is sit on start of operation.
- (2) When input X0 is turned ON, step 401 turns on.
- (3) When input X1 is turned ON, steps 402 and M404 turn ON simultaneously. Lines (a) and (b) are executed concurrently.
- (4) In line (a), step M403 turns ON when input X2 is turned ON.
- (5) In line (b), step M405 turns ON when input X3 is turned ON.
- (6) When input X4 is turned ON with both M403 and M405 activated, the common step M406 turns on. However, the step M406 won't turn ON when M403 and M404 are activated in lines (a) and (b), respectively. Control of lines (a) and (b) returns to step M400 simultaneously when input X5 is set to ON.

Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102

70	73	75	77	84	87	92	95	97	10	0		102	?
•	C 1		NT.		Б	•			of ds	Cha	nge i	n reg	ister
Instruction	Symb	101	Name		Fui	nction		Component	No.	AR	ER	С	Acc
F U N 04	МС	S	M	Sets comm	non serial	contacts.		N I	1	۰	•		•
F U N 05	МС	R	Master control	Resets con	mmon ser	al contacts.		None	1	•			•
								Code	_				
	MCS		X1 X2 M400 X3 Temporary bus	M420 M500 M501	X10 X11 X X3 X3 X10 X11 X M430 M	FUN (X13)	04 (MCS) (M42 05 (MCR) 05 (MCS) (M50	OR AND NO OUT FUN05 ORG FUN04 ORG AND NO AND	T M- M- X X X T X	420 110 111 112 113 500 430			

X 20 X 21

Y 240

AND

OUT

AND

OUT

FUN05 ORG

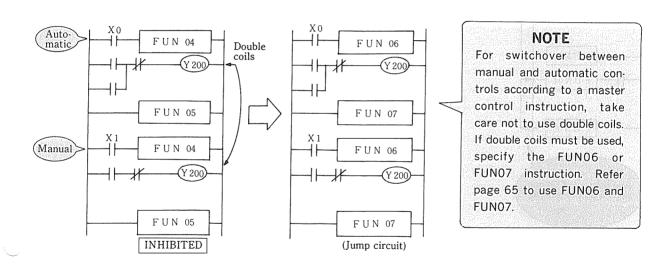
OR STR

FUN 05 (MCR)

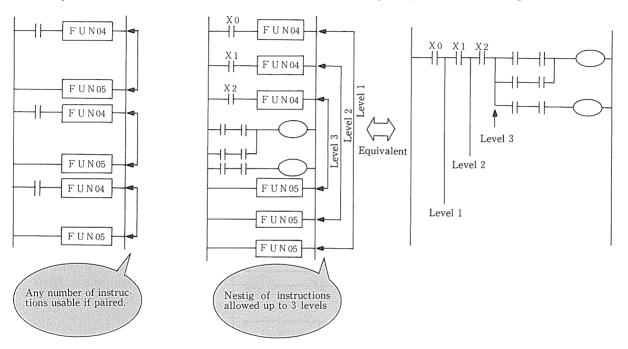
Y 240

M 431 STR NOT M432

M433

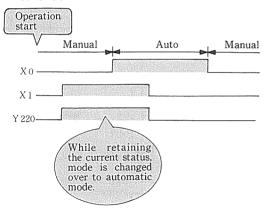

M501

X 20


X 21 Y 240

Tempo-rary bus

- 1. The FUN04 (MCS) and FUN05 (MCR) instructions are used for setting and resetting the common serial contacts, respectively. They must always be used as a pair. Otherwise, a syntax error occurs.
- 2. The FUN04 instructions must be followed by an ORG (or ORG NOT) instruction.
- 3. When the master control contacts are open, the subsequent output coil is set to OFF. In the example above, M420 is unconditionally OFF if input X0 is OFF.


4. Any number of master control instructions can be used if they are paired unless nesting.

Instructions can be nested up to 3 levels. At four levels or more, syntax error will occur.

Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shif regi		r	NC	ıΡ
72	73	75	77	84	87	92	95	97	10	0	I	102	
Instruction	Syml	ool	Name		Fun	ction		Component	Jo sp.	Cha	inge i	n reg	riste
FILMOS		-						Component	No. of words	AR	ER	С	Acc
FUN06	J M	Jur	np without Iressing	Skips pr	ogram till Jl	END		None	1	•	•		•
FUN07	JEN	D						TYOHE	1	•		0	6
FUN08	AJM	Jı	ımp with ldressing	Jums to	AJEND of c	orrespondin	g address	Address No	. 2		•	•	0
FUN09	AJEI	ND at	diessing	number.				(0~63)	2	9	•	۰	
	Automatic mode	Manual F	F U N 06 (Y 220) F U N 07 U N 06 (Y 220) U N 07	ORG NO FUNO ORG OR AND NO OUT FUNO ORG FUNO ORG AND NO OUT FUNO FUNO FUNO FUNO FUNO FUNO FUNO FUNO	X1	Manual F	V 220 U N 09 1 U N 08 2 U N 09 2	ORG N FUNOS ORG OR AND NO OUT FUNOS ORG AND NO OUT FUNOS FUNOS) M4 DT) Y2	(2 20 1 (0 2 (1 (2			

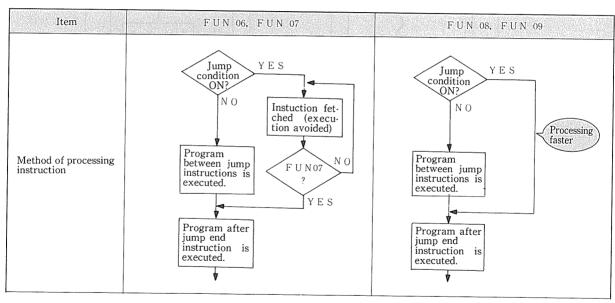
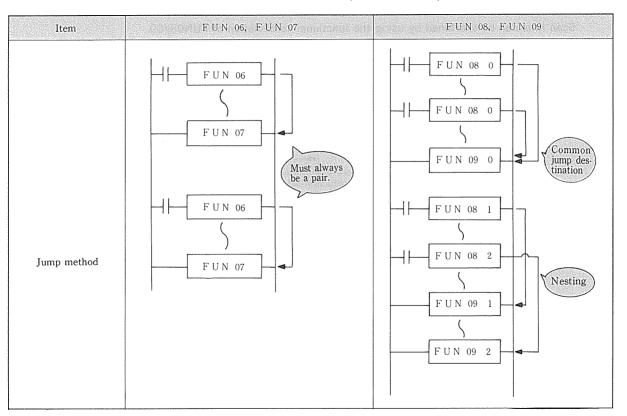
- 1. The FUN06 and FUN07 instructions specify jump without addressing, while the FUN08 and FUN 09 instructions specify jump with addressing. These instructions all cause cotrol to jump to JUMP END when the jump condition is set to ON.
- 2. When the jump conditions are satisfied, the program lines located between the current address and destination address are not executed. The output is held in the status before the jump. By using this function, a manual/auto switching circuit can be composed as illustrated above. If the same output coil is programmed between the jump circuits, a syntax error (double coil error E.) occurs, but operation can continue.

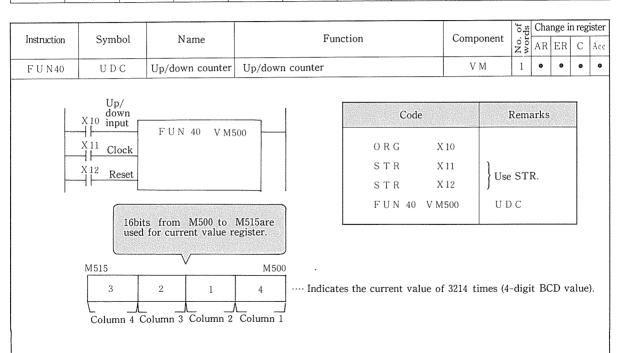
NOTE

If jump conditions are satisfied, the timer in the jump circuit stops operating. It restarts when the jump condetions are reset.

- 3. A jump instruction cannot be used between master control instructions.
- 4. The table below lists differences between the FUN06/07 instructions and FUN08/09 instructions. Scan time can be shortened by using the functional combination of FUN08/09.

Table: Differences between FUN06/07 and FUN08/09 (1/3)


Table: Differences between FUN06/07 and FUN08/09 (2/3)

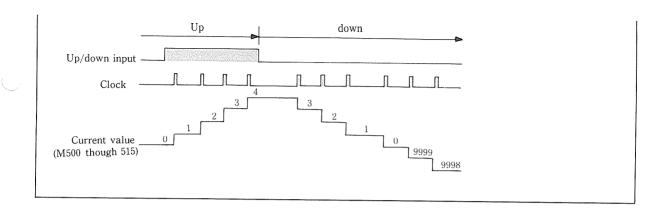
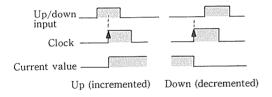
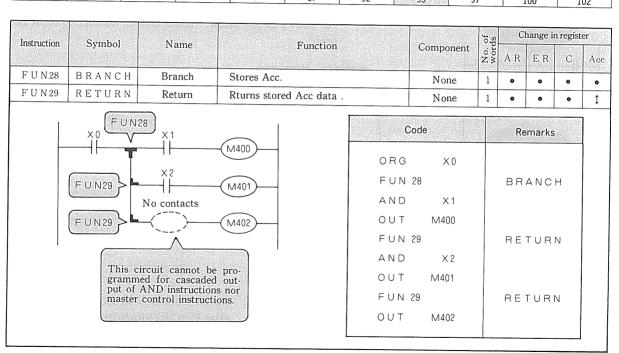


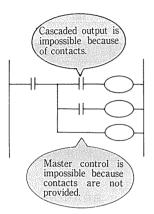
Table: Differences between FUN06/07 and FUN08/09 (3/3)

Item	FUN 06, FUN 07	FUN 08, FUN 09
Jump method	 These instructions must always be used as a pair. If not paired, a syntax error will occur. Nesting is unallowable. 	Jump from multiple FUN08 insturcions to a single FUN09 instruction is allowed. Nesting is allowed at different addresses. Jump to a preceding step is also posible.

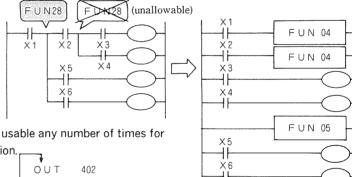

Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102



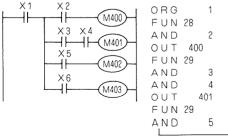
- 1. FUN40 (UDC) is the up/down counter instruction. It is to be programmed in combination with an internal output (VM).
- 2. 16 bits staring from the coil number specified by that instruction (M500 through M515 in the example shown above) are used as the current value register of up/down counter. The current value is presented in BCD 4 digits.
- 3. The up/down input, clock input and reset input are programmed in that order.


 The current value changes at the rising edge of the clock (from OFF to ON). Either UP or DOWN condition is selected according to the ON or OFF status of up/down input as shown below.

Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102



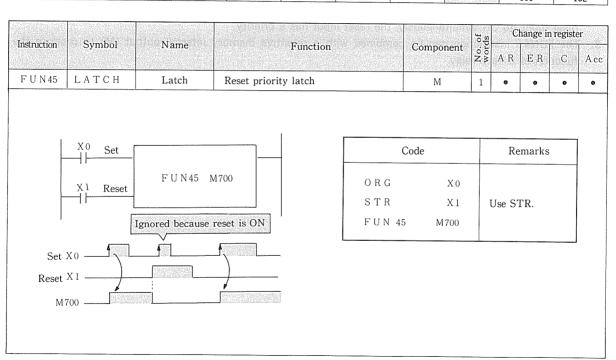
1. FUN28 (BRANCH) and FUN29 (RETURN) instructions allow programming of a circuit which is incompatible with the cascaded output of AND instruction and the master control instruction.



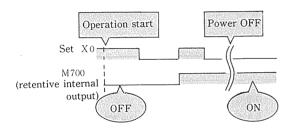
2. The FUN28 (BRANCH) instruction cannot be used more than once in the same circuit.

For such a circuit below, master control instruction must be used.

The FUN29 (RETURN) instruction is usable any number of times for a single FUN28 (BRANCH) instruction.

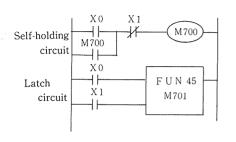


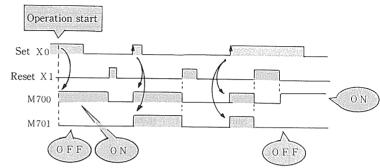
OUT 402 FUN 29 AND 6 OUT 403


> Master control instructions is unusable after FUN28 (BRANCH) instruction.

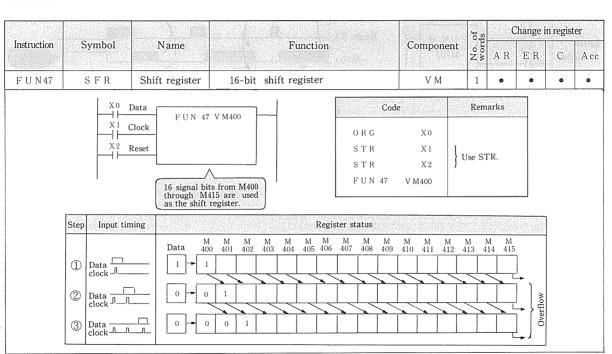
FUN 05

Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102

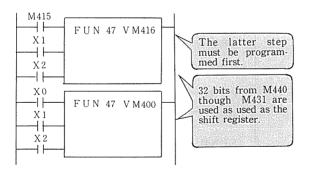

- 1. FUN45 (LATCH) is an edge triggered latch instruction with the reset priority signal. It must be programmed in combination with an internal output (M).
- 2. The ON status is set at the rising edge of the set input signal (from OFF to ON). The OFF status is set when the reset input goes ON. When the reset input is ON, the set input is rejected. If the set input and reset input go ON simultaneously, the reset input has a priority.
- 3. The FUN45 instruction can be combined with a retentive memory internal output (M) to produce the function of a keep relay.



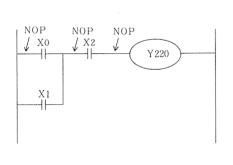
In the above sequence, the status of M700 at occurrence of power interruption is retained till its recovery because M700 is a retentive internal output.


Even when the set input X0 is turned ON at start of operation, edge will not be detected and M700 will not turn ON.

4. The self-holding circuit operates at a specific level (ON or OFF status), but the lath is operated at the signal edge. This causes the difference shown below.



Start and end	Edge	Set and reset	Step process	Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register	NOP
70	73	75	77	84	87	92	95	97	100	102



- 1. FUN47 (SFR) is the shift register instruction. It is to be programmed in combination with internal output (VM).
- 2. 16 bits (M400 through M415 in the example shown above), from the coil number specified by the FUN47 instruction and higher, are used as the register.
- 3. When the clock input rises (from OFF to ON), concurrent data input (ON/OFF status) is written in the least significant bit of the register (M400 in this example). The ON/OFF status of each register is shifted to the next high-order bit synchronized with the rise of clock input.
- **4.** Data of most significant bit (M415 in this example) may overflow as a result of shift operation. When connecting two (2) or more shift registers, the latter step (with a larger I/O number) must be programmed first in order to prevent data being lost due to overflow.

Start and end	Edge	Set and reset		Master control	Jump	Up/ down counter	Branch and return	Latch	Shift register NOP
70	73	75	77	84	87	92	95	97	100 102

Instruction	Symbol	Name	Function To the Part of the Pa	Component	No. of words	Cha A R	nge i ER	Shanes and	ister Acc
FUN41	NOP	NOP	No operation	None	1	0	•	•	•

Code	State and resident	Remarks
F U N 41		NOP
ORG	X 0	
O R	X 1	
F U N 41		NOP
AND	X 2	
F U N 41		NOP
OUT	Y 220	

1. FUN41 is NOP instruction. This instruction does not cause any execution in its step. It may be located anywhere in a program.

1

PRINCIPLE OF PC

2

INPUT/OUTPUT AND NUMBERS

3

PROGRAMMING

- 3.1 Basic Instructions
- 3.2 Application Instructions (I)
- 3.3 Arithmetic Instructions
- 3.4 Application Instructions (II)

Arithmetic Instructions (1/4)

[<u>.</u>						rds		ian egi			Refer
Classification	Instruction	Abbreviation	Name	Function	Component	No. of	AR	ER	CR	Acc	ence page
0.5	FUN 0	LOADI	400 CON 10 CON 1	Constant→AR	Constant (0000H~9999H)	2	1	•	٥	•	112
	FUN10	LOADW		I/O→AR	WX,WY,WM,T/C100~295	2	1	0	0	•	112
Load	FUN20	LOADB	Load	I/O→AR	VX,VY,VM,T/C0~95	2	Ī	0	•	0	112
~	FUN50	LBYTI		1 byte constant → AR _L (lower 8 bits)	Constant (00~FF)	2	1	0	•	0	112
	FUN60	BLOAD		I/O→AR _L (lower 8 bits)	WX,WY,WM,T/C100~295	. 2	1	•	۰	•	112
	FUN21	OUTW		AR→I/O	WY,WM,T/C100~295	2	0	•	•	۰	116
Out	FUN22	OUTB	Out	AR→I/O	VY,VM	2	•	0	•	•	116
0	FUN71	BOUT		AR _L →I/O	WY,WM,T/C100~295	2	•	•	•	•	116
	FUN 1	ADDI		AR B+constant→AR	Constant (0000H~9999H)	2	1	0	1	0	122
	FUN11	ADD	BCD add	AR B+I/O→AR	WX,WY,WM,T/C100~295	2	1	•	1	•	122
Add	FUN51	ABYTI		AR+constant→AR	Constant (0~FFFF)	2	1	0	1	•	122
	FUN61	ADBNR	BIN add	AR+I/O→AR	WX,WY,WM,T/C100~295	2	1	•	1	0	122
	FUN 2	SUBI		AR B-constant→AR	Constant (0000H~9999H)	2	1	•	Ţ	•	124
act	FUN12	SUB	BCD subtract	AR B−I/O→AR	WX,WY,WM,T/C100~295	2	1	•	1	•	124
Subtract	FUN52	SBYTI		AR-constant→AR	Constant (0~FFFF)	2	1	•	1	•	124
Su	FUN62	SUBNR	BIN subtract	AR−I/O→AR	WX,WY,WM,T/C100~295	2	1	•	1	•	124
	FUN 3	MULI		AR B*constant→AR	Constant (0000H~9999H)	2	1	9	1	0	126
ply	FUN13	MUL	BCD multiply	AR B∗I/O→AR	WX,WY,WM,T/C100~295	2	1	•	1	•	126
Multiply	FUN53	MBYTI		AR * constant→AR	Constant (0~FFFF)	2	1	1	1	•	126
Σ	FUN63	MUBNR	BIN multiply	AR * I/O→AR	WX,WY,WM,T/C100~295	2	1	1	1	•	126

Arithmetic Instructions (2/4)

Classification	Instruction	Abbreviation	Name	Function	Company	of	3	hai reg			Refer
Classi			1,4476	T diletion	Component	No. o	ΑF	EF	CF	RAcc	ence page
	FUN 4	DIVI	BCD divide	AR B/constant→AR	Constant (0000H~9999H)	2	1	•	1	0	128
Divide	FUN14	DIV	BCD divide	AR B/ I/O→AR	WX,WY,WM,T/C100~295	2	1	0	1	9	128
Div	FUN54	DBYTI	BIN divide	AR/constant→AR	Constant (0~FFFF)	2	1	1	1		128
	FUN64	DIBNR	DIN divide	AR/I/O→AR	WX,WY,WM,T/C100~295	2	1	1	ī		128
	FUN 5	ANDI		AR AND constant→AR	Constant (0000H~9999H)	2	1	•	•		130
	FUN15	AND	AND	AR AND I/O→AR	WX,WY,WM,T/C100~295	2	1	0	•	0	130
	FUN55	BANDI		AR _L AND constant→AR _L	Constant (00~FF)	2	1	0	•	0	130
Logic	FUN 6	ORI		AR OR constant→AR	Constant (0000H~9999H)	2	1	0	0	0	130
Log	FUN16	OR	OR	AR EOR I/O→AR	WX,WY,WM,T/C100~295	2	I	0	0	9	130
	FUN56	BORI		AR _L OR constant→AR _L	Constant (00~FF)	2	I		•	6	130
	FUN66	EXOR	Exclusive-OR	AR EOR I/O→AR	WX,WY,WM,T/C1100~295	2	ī			6	130
	FUN85	WNOT	Logical not	$\overline{AR} \rightarrow AR$	None	1	1	0	•	0	130
	FUN 7	CPEHI		AR ≥ constant······1→C	Constant (0000H~9999H)	2	•	0	1	0	133
	FUN17	CPEH	Compare(≥)	$AR \ge I/O \cdot \cdot \cdot \cdot 1 \rightarrow C$	WX,WY,WM,T/C100~295	2	•	0	1	9	133
	FUN57	ВСРНІ		$AR_{L} \ge constant \cdots 1 \rightarrow C$	Constant (00~FF)	2	•		ī		133
e e	FUN 8	CPEI		AR=constant·····1→C	Constant (0000H~9999H)	2			1		133
Compare	FUN18	CPE	Compare(=)	AR=I/O·····1→C	WX,WY,WM,T/C100~295	2	•	0	1	6	133
Son	FUN58	BCPEI		$AR_L = constant \cdots 1 \rightarrow C$	Constant (00~FF)	2		0	1		133
	FUN 9	CPLI		AR < constant ······1→C	Constant (0000H~9999H)	2			1	0	133
	FUN19	CPL	Compare(<)	$AR < I/O \cdot \cdots 1 \rightarrow C$	WX,WY,WM,T/C100~295	2			1	9	133
	FUN59	BCPLI		$AR_{L} < constant \cdots 1 \rightarrow C$	Constant (00~FF)	2		•	I		133

Arithmetic Instructions (3/4)

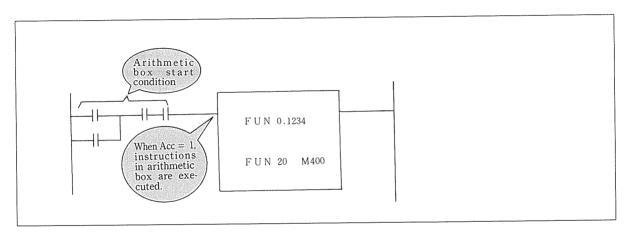
ition						of words	CI r	nan egi			Refer
Classification	Instruction	Abbreviation	Name	Function	Component	No. of wo	AR	ER	CR	Acc	page
	FUN23	OUC	Out carry	C→I/O	Y,M	1	•	0	•	•	136
Carry	FUN83	CLC	clear carry	C←"0"	None	1	0	•	0	9	136
O	FUN84	SEC	Set carry	C←"1"	None	1	•	0	1	•	136
	FUN24	BCD	BCD convert	BCD convert	None	1	1	0	1	•	137
	FUN25	BNR	BIN convert	BIN convert	None	1	1	0	1	0	137
Convert	FUN74	SEG	7-segment convert	Decodes AR _{LL} data into 7-segment display.	None	1	1	•	•	•	139
l o	FUN75	ASC	ASCII convert	Converts AR _{LL} data into ASCII code.	None	1	Ī	•	•	9	139
	FUN78	ENCOD	Encode	16 to 4	None	1	Ī	•	1	•	141
	FUN79	DECOD	Decode	4 to 16	None	1	Î	•	1	•	141
	FUN26	LSFR	_	Left shift	None	1	1	9	1	•	143
 ∰	FUN27	RSFR	Shift	Right shift	None	1	1	0	1	•	143
Shift	FUN76	ROL		CW rotate	None	1	1	0	1	•	143
	FUN77	ROR	Rotate	CCW rotation	None	1	1		1	•	143
sk	FUN72	MASKL	Left mask	Masks AR by specified bits from left.	0~255	2	1			0	145
Mask	FUN73	MASKR	Right mask	Masks AR by specified bits from right.	0~255	2	1	0	•	•	145
ge	FUN80	SWAP	AR _H /AR _L exchange	AR _H ≠AR _L	None	1	1	•	0	•	147
Exchange	FUN81	BSWAP	AR _{LH} ,/AR _{LL} exchange	AR _{lH} ≠ AR _{ll}	None	1	1	6	0	•	147
Ex	FUN82	XCG	AR/ER exchange	AR≠ER	None	1	1	1	•	•	147

Arithmetic Instructions (4/4)

Classification	Instruction	Abbreviation	Name	Function		Vo. of		han regi ER	iste	r	Reference page
Distribute /extract	FUN48	EX	Extract	Fetches data into AR from I/O address-specified by ER.	None	2 1	1	•	1	•	149
Dist /ext	FUN49	DB	Distribute	Outputs data from AR to I/O address-specified by ER.	None	1	•	•	I	•	149

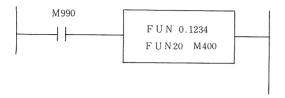
: Register remains unchanged

1: Register changed

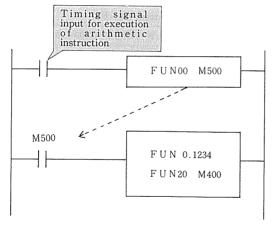

Note: Although the table above contains entries of constants $(00 \sim FFF)$ and $(0 \sim FFFF)$, the programmer is not provided with A to F keys which are indispensable for specification of hexadecimal constants.

Therefore, specification must be made in decimal constants.

Besides, each constant can be entered in up to 3 digits.

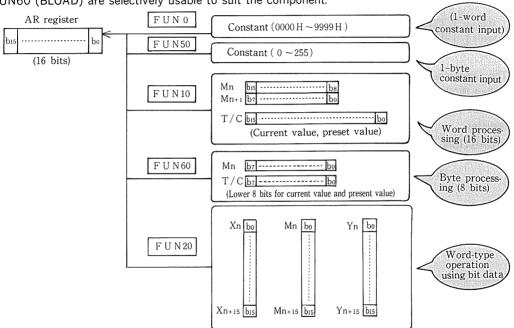

Example: FUN51 427 AR + 1ABH \rightarrow AR (Decimal 427 = hexadecimal 1ABH)

Concept of arithmetic Load	out	4-rule calculations	Logic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/ extract
instruction	out	Add Subtra-Multiply Divide	Logic	o mpar o	Juny					extract
110 112	116	122 124 126 128	130	133	136	137	143	145	147	149

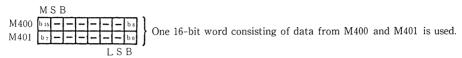


1. Arithmetic instruction is assumed to be contained in the arithmetic box, and consecutive arithmetic instructions are put in the same arithmetic box. Before each arithmetic box, start condition is to be provided. When the start condition is satisfied (Acc=1), arithmetic instruction in the arithmetic box is excuted. This won't occur if the start condition is not satisfied (Acc=0), and the previous status is retained.

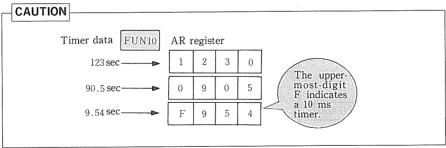
2. For an arithmetic instruction to be executed every scan, it is recommended to use the special internal output M990 for the start condition since ON status is always secured.



3. For an arithmetic instruction to be executed for only one scan at a certain timing, it is recommended to use the edge instruction as the start condition.

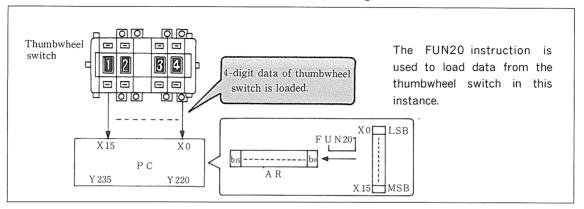

Concept of arithmetic	Load o	ut	4-rı	ıle cal	culation	ons	Logic	Compare	Car	rv	Convert	Shift	Mask	Exc	hang		istrib xtract	
instruction		<i>-</i>	Add	Subtra ct	Multiply	Divide	208.0			-,						-		
110	112	116	122	124	126	128	130	133	136	j	137	143	145		147		149	}
Instruction	Abbreviatio	on	Nam	e			Functi	ion I			Co	mponent		No. of words			n regi C R	
FUN 0	LOADI				Cons	tant -	A R			Со	nstant (00	00H ~ 999	9H)	2	1	۰	•	0
FUN10	LOADW		المصي		I/O-	A R				W.	X,WY,W	M, T/C10	0~295	2	1	•	0	۰
FUN20	LOADB	_ L	oad		1/0	→A R				V	X, VY,	VM, T	/C0~95	2	‡	•	•	0
F U N 50	LBYTI				1 byte	e cons	tant→ A F	RL (lower 8	bits)	Сс	onstant (00	~FF)		2	1	•	•	•
F U N 60	BLOAD				1/0-	→ A R	L(lower 8	B bits)		W.	X,WY,WM	, T/C 100	~ 295	2	1	•	•	•
	hmetic start ition		Add befo cons	ore stant	4321		< <u>C₀</u>	nstanti 4321	lH			▶ A	R					
			UN 1		M 400 X 20		M	400 bis 401 b7			- b8 - b0		R		Cons	tant	63	
			UN E		63 M410		4	onstant 63	[-]-[-1-	- bo -		RL RL	/ `	(0011 is f in A	1111 etch	(2))

1. Load instruction loads the word data (16 bits) or byte data (8 bits) to be processed into the AR register. Five kinds of load instructions FUN0 (LOAD1), FUN10 (LOADW), FUN20 (LOADB), FUN50 (LBYT1) and FUN60 (BLOAD) are selectively usable to suit the component.



(1) The FUNO (LOADI) instruction loads a one-word constant (0000H to 9999H) into the AR register. The constant must be preceded by a decimal point (.) when keying in.

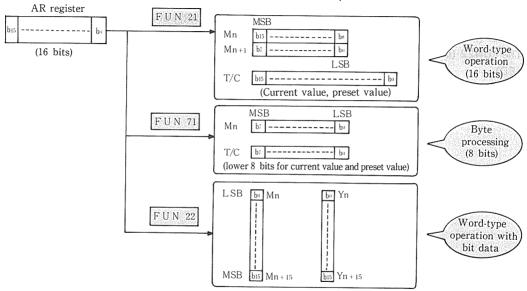
- (2) The FUN10 (LOADW) instruction loads one-word I/O data into the AR register.
 - ① Internal outputs are used for both bit and byte data (8-bit data for each number). 8 bit data of the specified internal output (Mn) and the next internal output (Mn+1), 16-bit data in total, are loaded into the AR register.


The timer/counter current values (T/C100 to T/C195) and preset values (T/C200 to T/C295) are 4-digit BCD (16bits) data. The counter preset value and current value are loaded into the AR register without change. However, the timer value is processed as shown below before loaded into the AR register.

(3) The FUN60 (BLOAD) instruction loads 1-byte (8-bit) I/O data into the lower 8 bits (AR_L) of AR register. The upper 8 bits (AR_H) of AR register remain unchanged. The FUN60 instruction is used to load the external input of 8-bit analog module.

M500 b_7 ----- b_0 8-bit data of the specified number is processed. M S B L S B

(4) The FUN20 (LOADB) instruction loads 16 I/O data simultaneously into the AR register. 16 data from the specified number and upward are loaded into the AR register.


(5) The FUN50 (LBYT1) instruction loads a described bit pattern into the AR register.

The E-series programmers (PGMJ and PGM-R2) do not have keys A through F required for hexadecimal notation. However, when a decimal constant (0 to 255) is specified by the FUN50 instruction, it is handled as a one-byte data (00H to FFH) and loaded into the lower 8 bits (AR_L) of the AR register. In this case, the upper 8 bits (AR_H) of the same register remain unchanged. When used in combination with the FUN80 instruction, the FUN50 instruction is capable of loading a desired bit pattern into the upper 8 bits (AR_H).

Concept of arithmetic	Load	out	4-rı	ıle cal	culatio	ns	Logic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/
instruction		out	Add	Subtra- ct	Multiply	Divide	FORIC	Jonnparo	Ourry	Conton	O.III.C			extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

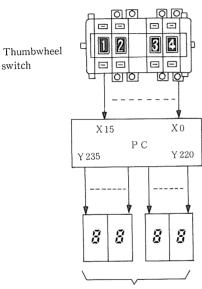
					f	Cha	nge i	n reg	ister
Instruction	Abbreviation	Name	Function	Component	No. of words	A R	ΕR	C R	Acc
F U N 21	OUTW		A R→I/O	WY, WM, T/C100~295	2	•	0	•	•
FUN71	BOUT	Out	$A R_L \rightarrow I / O (8 \text{ bits })$	WY, WM, T/C100~295	2	0	•	0	0
F U N 22	OUTB		A R→ I / O	VY, VM	2	•	•	•	0
		F U	N 21 W M 400 A	R M400 bis M401 bi	bs bo				

1. OUT instruction outputs data in the AR register to the destination component. Three kinds of OUT instructions below are selectively usable so as to meet the component.

- (1) The FUN21 (OUTW) instruction outputs data in the AR register to the 16-bit area made up of the specified internal output (Mn) and the next internal output (Mn+1). This instruction is also used for outputting AR register data to current value (T/C100 through T/C195) or preset value (T/C200 to T/C295) of timer/counter.
- (2) The FUN71 (BOUT) instruction outputs the lower 8-bit data (AR_L) of AR register to the specified internal output (Mn). This instruction is used for analog output when the analog I/O module is mounted.

(3) The FUN22 (OUTB) instruction is used to output AR register data to the numerical display (7-segment LED).

ΡС


Y 255

Y 220

[Application example of LOAD and OUT instructions]

1. Explanation of operations

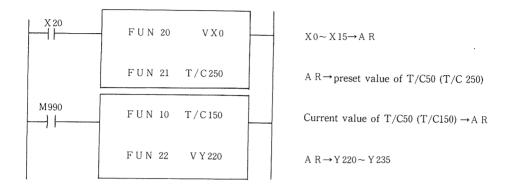
switch

Display unit with decoder circuit (example)

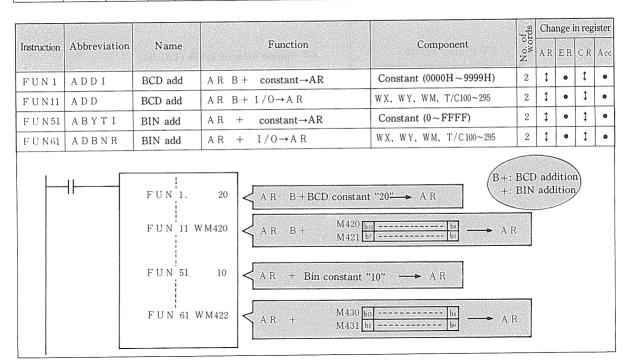
Truth table of thumbwheel switch

	Switch terminal	8	4	2	1	
	PC terminal	X 3	X 2	X 1	X 0	Indicates
		X 7	X 6	X 5	X 4	∫terminal
Digit		X 11	X 10	X 9	X 8	wiring.
Digit		X 15	X 14	X 13	X 12	
	0					,
	1				0	
	2			0		
Thum	3			0	0	
bwheel	4		0			
switch	5		0		0	
dial	6		0	9		
	7		•	0	0	● O N
	8	0				
	9	0			0	

Truth table of display unit with decoder circuit


	Display terminal	D	С	В	А
	PC	Y 223	Y 222	Y 221	Y 220
`	terminal	Y 227	Y 226	Y 225	Y 224
Digit		Y 231	Y 230	Y 229	Y 228
Digit		Y 235	Y 234	Y 233	Y 232
	0				
	1				0
	2			•	
Numerical	3			0	0
14 dilici leai	4		0		
display unit	5		0		0
display diffe	6		0	6	
	7		0	0	0
	8	0			
	9	0			0

Indicates terminal wiring.

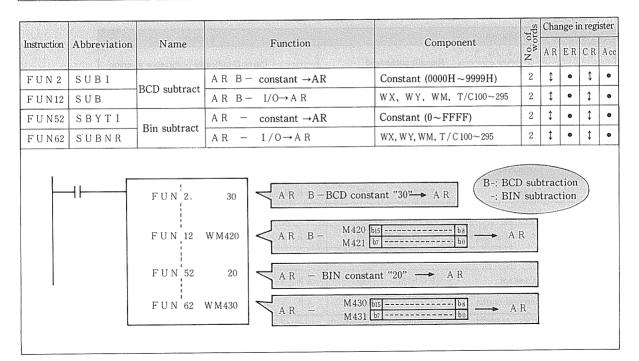

• 0 N

- (1) Preset value of the counter in PC is set when X20 turns ON with a 4-digit BCD thumbwheel switch connected to the PC external input terminal.
- (2) Current value of the counter in PC is output to the 7-segmnet display unit. This unit is provided with a decoder circuit.

2. Sequence

Concept of arithmetic instruction	Load	out	4-rule calcul	lations altiply Divide	Logic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/ extract
110	112	116	122 124 1	26 128	130	133	136	137	143	145	147	149

- 1. ADD instructions add AR register data to component data and load the sum to the AR register. There are two kinds of ADD instructions; BCD and BIN ADD instructions, each of which consists of paired instructions for selective use depending on whether the component data is a constant or I/O.
- 2. When the sum is more than four (4) digits, the carry C turns OFF. In this case, instruction is handled as shown below.


Conditions	Instruction	A'R	С	Remarks
	FUN 1	Remain unchanged	1	Communication to a communication of arror
Sum has exceeded	FUN 11	Kemani unchangeo	1	Carry C indicates occurrence of error.
4 digits.	FUN 51	Sum of 4 digits or less loaded	1	Carry C indicates occurrence of a carry.
	FUN 61	Sum of 4 digits of less loaded	1	carry o malcates occurrence of a carry.

3. If a non-BCD data is handled by the FUN1 or FUN11 instruction, neither AR register nor carry C data is assured. The table below lists example programs for different components.

Classification	Compo	onent	Program	Explanation
	Consta	ınt	FUN 1. 4321	A R B + BCD constant 4321 → A R
BCD	Intern	al output	FUN 11 WM500	A R B + W M 500 → A R
addition	Timer	Current value	FUN 11 T/C150	A R B + T/C50 current value → A R
	counter	Preset value	FUN 11 T/C250	A R B + T/C50 preset value → A R
Bin	Cons	tant	FUN 51 735	A R + Bin constant 735 → A R
addition	Interr	nal output	FUN 61 WM422	A R + W M 422 → A R

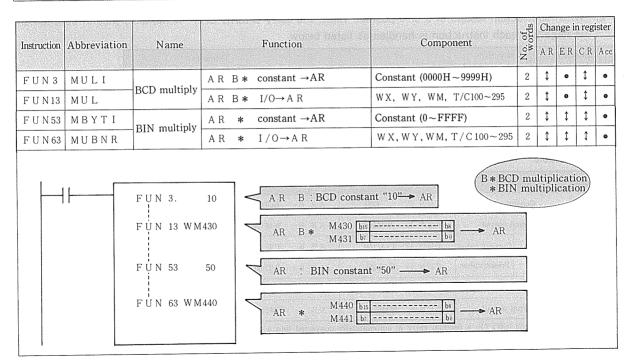
Note: In case of FUN51 (ABYTI), a decimal entry is automatically converted into a hexadecimal value before addition because of the restriction peculiar to the programmer. In addition, entry is possible only up to 3 digits. For instance, entry (735)₁₀ is converted into (2DF)₁₆.

Concept of		Out.	4-rule calculations	Logic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/	
arithmetic Load instruction		out	Add Subtra-Multiply Divide	LUGIC	Compare	Carry	Convert	Jiiii .	Mask	<u> </u>	extract	
110	112	116	122 124 126 128	130	133	136	137	143	145	147	149	

1. SUB instructions subtract component data from AR register data and load the difference to the the AR register.

There are two kinds of SUB instructions; BCD and BIN SUB instructions, each of which consints of paired instructions for constant and I/O, respectively.

2. When subtraction results in 0 or a positive value, the carry C turns OFF. If the difference of subtraction is negative, each instruction is handled as listed below.


Condition	Instruction	AR	С	Remarks
	FUN 2	Remain unchanged	1	C C: Vista
Difference is negative.	FUN 12	Remain unchanged	1	Carry C indicates occurrence of error.
negative.	FUN 52	Difference loaded	1	Carry C indicates decrement to next
	FUN 62	(expressed in two's complement)	1	lower digit.

3. If a non-BCD data is handlded by the FUN2 or FUN12 instruction, neither AR register data nor carry C data is reliable. The table below lists example programs for different components.

Classification	Comp	onent	Progr	ram	E	xplanation
	Constant		FUN 2.	4321	AR B-	BCD constant 4321 → A R
BCD	Intern	al output	FUN 12	W M500	AR B-	W M 500 → A R
subtraction	Timer/	Current value	FUN 12	T/C150	ARB-	T/C 50 current value → A R
	counter	Preset value	FUN 12	T/C250	AR B-	T/C 50 preset value → A R
Bin	Const	tant	FUN 52	735	AR -BI	N constant 735→A R
subtraction	Intern	al output	FUN 62	W M510	AR - V	V M 510 → A R

Note: In case of FUN52 (SBYTI), a decimal entry is automatically converted into a hexadecimal value before subtraction because of the restriction peculiar to the programmer. In addition, entry is possible only up to 3 digits. For instance, entry (735) 10 is converted into (2DF)16.

Concept of arithmetic instruction	Load	out	4-rule calculations Add Subtra-Multiply Divide	Logic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/ extract
110	112	116	122 124 126 128	130	133	136	137	143	145	147	149

- 1. MUL instructions multiply AR register data with component data and load the product to the AR register. There are two kinds of MUL instructions; BCD and BIN MUL instructions, each of which consists of paired instructions for constant and I/O, respectively.
- 2. When multiplication results in 4 digits or less, the carry C turns OFF. If the product of multiplication exceeds 4 digits, each instruction is handled as listed below.

Condition	Instruction	AR	ER	С	Remarks
	FUN 3	Remain	Remain	1	Carry C indicates occurrence of error.
Product exceeds	FUN 13	unchanged	unchanged	1	Carry C mulcates occurrence of error.
4 digits.	FUN 53	4th digit and lower of	5th digit and upper of	1	Carry C indicates the product reaches
	FUN 63	product	product	1	5 digits.

3. If a non-BCD data is handled by the FUN3 or FUN13 instruction, neither AR register data nor carry C data is reliable. The table below lists example programs for different components.

Classification	Comp	onent	Pro	gram		Explanation	
	Const	tant	FUN 3.	4321	A R	B *	BCD constant 4321 → A R
Bin multipli-	Internal output		FUN 13	W M500	A R	B *	W M 500 → A R
cation	Timer/	Current value	FUN 13	T/C150	A R	B *	T/C50 current value → A R
	counter	Preset value	FUN 13	T/C250	A R	В*	T/C50 preset value →AR
BCD	Const	ant	FUN 53	735	A R	*	BIN constant 735 → A R
multipli- cation	Intern	al output	FUN 63	W M 510	A R	*	W M 510 → A R

Note: In case of FUN52 (SBYTI), a decimal entry is automatically converted into a hexadecimal value before multiplication because of the restriction peculiar to the programmer. In addition, entry is possible only up to 3 digits. For instance, entry (735) 10 is converted into (2DF)10.

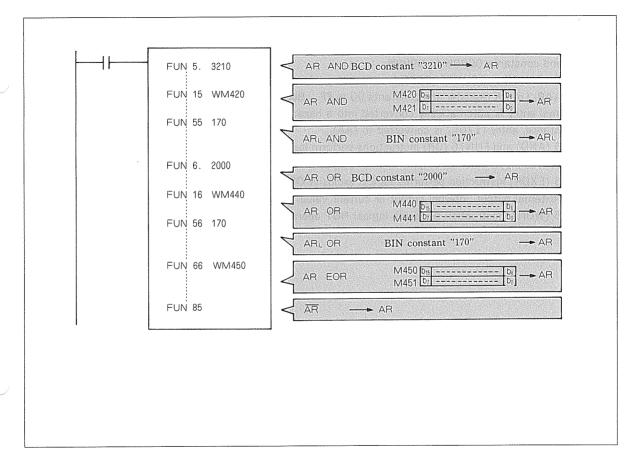
Concept of arithmetic instruction	Load	out	4-rı Add	subtra	3000X	ons ly Divide	Logic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/ extract
110	110	110	100	124	126	1120	120	133	126	137	1/13	1/15	147	149

110	112	116	5 122	124	4 126 128 130 133 136 137 143 145								147		149	}	
													of ords	Cha	nge ii	ı regi	ster
Instruction	Abbrevia	ation	Nam	e								No. WC	Cha A R	ΕR	C R	Acc	
FUN4	DIVI		202		A R	В/	constant	→AR		Constant (00	00H~999	9H)	2	1	•	1	•
FUN14	DIV		BCD div	/ide	ΑВ	В/	I/O→A	R		WX, WY, W	/M, T/C1	00~295	2	1	•	\$	9
FUN54	DBYT	I	DINI U	٠.١.	ΑR	/	constant	→AR		constant (0~	-FFFF)		2	1	‡	\$	0
FUN64	DIBN	R	BIN div	ide	A R	/	I / O → A	R		WX,WY,W	M, T/C	100~295	2	1	1	1	•
			FUN FUN FUN FUN	14 W	3		AR	B/ /BIN co	M440 M441	b₁	bs bn	B/: I /: B /: B AR	IN d	divis			

- 1. DIV instructions devide AR register with component data and load the quotient to the AR register. There are two kinds of DIV instructions; BCD and BIN divide instructions, each of which consists of paired instructions for constant and I/O, respectively.
- 2. Each DIV instruction is handled as listed below in cases of usual division and 0 division.

Condition	Instruction	AR	ER	С	Remarks
	FUN 4		Remain	0	Remainder is neglected.
	FUN 14	Quotient	unchanged.	0	Remander is neglected.
Usual division	FUN 54	0 13 1	Carry C indicates	0	Remainder is loaded in ER.
	FUN 64	Quotient	occurrence of error.	0	Remainder is loaded in Ex.
	FUN 4			1	
	FUN 14	Remain	Remain	1	Carry C indicates occurrence of error.
÷ 0	FUN 54	unchanged	unchanged.	1	Carry C indicates occurrence of error.
	FUN 64			1	

3. If non-BCD constant is handled in in the FUN4 or FUN14 instruction, neither AR register data nor carry C data is reliable.


The table below lists example programs for different components.

Classification	Com	ponent	Prog	ram		Explanation
29/2007/10/2007/2007/2007	Cons	tant	FUN 4.	5	A R	B ∕ BCD constant 5 → A R
BCD	Internal output		FUN 14	W M500	A R	B ∕ W M 500 → A R
division	Timer/	Current value	FUN 14	T / C 150	A R	B / T/C50 current value → A R
	counter	Preset value	FUN 14	T / C 250	A R	B / T/C50 preset value → A R
BIN	Cons	tant	FUN 53	12	A R	/ BIN constant 12 → A R
division			FUN 64	W M 510	AR	/ WM510 → AR

Note: In case of FUN54 (DBYT1), a decimal entry is automatically converted into a hexadecimal value before division because of the restriction peculiar to the programmer. Besides, entry is possible only up to 3 digits. For instance, entry $(12)_{10}$ is converted into $(C)_{14}$.

Concept of arithmetic	Load	out	4-rule calculations Add Subtra-Multiply Divide			Logic Compare		Carry	Convert	Shift	Mask	Exchange	Distribute/	
instruction		out	Add	Subtra- ct	Multiply	Divide	LUGIC	Oompare	Carry	Convert	J.III.			extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

					of ords	Chai	nge ii	regi	ister
Instruction	Abbreviation	Name	Function	Component	No.	AR	ER	CR	Acc
FUN 5	ANDI		AR AND constant → AR	constant (0000H~9999H)	2	1	•	•	•
FUN 15	AND	AND	AR AND I/O → AR	WX, WY, WM. T/C 100~295	2	1	•	•	•
FUN 55	BANDI		AR _L AND constant → AR _L	constant (00~FF)	2	\$	•	•	•
FUN 6	ORI		AR OR constant → AR	constant (0000H~9999H)	2	\$	•	•	•
FUN 16	OR	OR	AR OR I/O → AR	WX, WY, WM, T/C 100~295	2	\$	٠	•	•
FUN 56	BORI		AR _L OR constant → AR _L	constant (00~FF)	2	1	•	•	•
FUN 66	EXOR	Exclusive-OR	AR EOR I/O → AR	WX, WY, WM, T/C 100~295	2	1	•	•	•
FUN 85	WNOT	Logical NOT	$\overline{AR} \rightarrow AR$	None	1	1	•	•	•

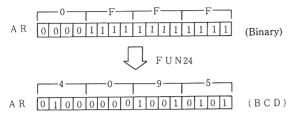
- 1. FUN5 (ANDI) and FUN6 (ORI) instructions perform logical AND and OR operations between AR register data and constants 0000H to 9999H.
 - FUN55 (BANDI) and FUN56 (BORI) instructions perform logical AND and OR operations between the lower 8 bits (AR_L) of AR regdster and constants 00 to FF. Because of the restriction peculiar to the programmer, a decimal entry is automatically converted into a hexadecimal value before logical AND/OR operations. For instance, entry $(170)_{10}$ is converted to $(AA)_{16}$.
- 2. FUN15 (AND) and FUN16 (OR) instructions perform logical AND/OR operations between AR register data and external input, external output, internal output or current value/preset value of timer/counter.
- **3.** FUN66 (EXOR) instruction performs logical exclusive-OR operation between AR register data and external input, external output, internal output or current value/preset value of timer/counter.
- 4. FUN85 (WONT) instruction performs logical NOT operation of AR register data.

Concept of arithmetic	Load	out	4-rı	ıle cal	culati	ons	l ngir	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/
instruction		out	Add	Subtra ct	Multipl	Divide	-v810	Joinpaid	Ourry		J	,,,,,,		extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

			Barrier Constitution (Constitution Constitution Constitut	The second section is a second of the second section in the second section is a second section of the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in	of ords	Chai	nge in	ı regi	ster
Instruction	Abbreviation	Name	Function	Component	No. o		ER	CR	Acc
FUN 7	CPEHI		AR≥constant······1→C AR <constant······0→c< td=""><td>constant (0000H~9999H)</td><td>2</td><td>•</td><td>•</td><td>‡</td><td>•</td></constant······0→c<>	constant (0000H~9999H)	2	•	•	‡	•
FUN 17	CPEH	Compare (≥)	AR≥I/O·····1→C AR <i o·····0→c<="" td=""><td>WX, WY, WM. T/C 100~295</td><td>2</td><td>•</td><td>٠</td><td>\$</td><td>•</td></i>	WX, WY, WM. T/C 100~295	2	•	٠	\$	•
FUN 57	ВСРНІ		$AR_L \ge constant \cdot \dots \cdot 1 \rightarrow C AR_L < constant \cdot \dots \cdot 0 \rightarrow C$	constant (00~FF)	2	•	•	1	•
FUN 8	CPEI		AR=constant······1→C AR≠constant·····0→C	constant (0000H~9999H)	2	•	•	\$	•
FUN 18	CPE	Compare(=)	$AR = I/O \cdot \cdot \cdot \cdot 1 \rightarrow C AR \neq I/O \cdot \cdot \cdot \cdot \cdot 0 \rightarrow C$	WX, WY, WM, T/C 100~295	2	•	•	‡	•
FUN 58	BCPEI		$AR_L = constant \cdot \dots \cdot 1 \rightarrow C AR_L \neq constant \cdot \dots \cdot 0 \rightarrow C$	constant (00~FF)	2	•	•	\$	•
FUN 9	CPLI		AR < constant······1→C AR ≥ constant·····0→C	constant (0000H~9999H)	2	•	•	‡	•
FUN 19	CPL	Compare(<)	$AR < I/O \cdot \dots 1 \rightarrow C AR \ge I/O \cdot \dots 0 \rightarrow C$	WX, WY, WM, T/C 100~295	2	•	•	\$	•
FUN 59	BCPLI		$AR_L < constant \cdot \dots \cdot 1 \rightarrow C AR_L \ge constant \cdot \dots \cdot 0 \rightarrow C$	constant (00~FF)	2	<u> </u>	•	1	•

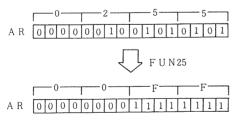
- 1. Compare instructions are classified into 3 types: ≥, = and <. Each type consists of 3 kinds of instructions. So nine kinds of compare instructions in total are selectable to suit the component. AR register and component data are compared as binary numbers without sign. If the result of comparison is true, carry C is set to ON. If it is false, carry C is set to OFF.
- 2. FUN7 (CPEHI) and FUN9 (CPLI) are instructions to compare AR register data with constants 0000H to 9999H. FUN57 (BCPHI), FUN58 (BCPEI) and FUN59 (BCPLI) are instructions to compare the lower 8 bits (AR_L) of AR registem with constants 00to FF. Because of the restriction peculiar to the programmer, a decimal entry is automatically converted into a hexadecimal value before comparison. For instance, entry (255)₁₀ is converted into (FF)₁₆.
- 3. FUN17 (CPEH), FUN18(CPE) and FUN19(CPL) are instructions to compareAR register data with external input, external output, internal output, timer/counter current value and preset value. Component data need not be BCD data (0000H through 9999H).

Concept of arithmetic	Load	out	4-rı	ıle cal	culatio	ns	Logic	Compa	re Carry	Convert	Shift	Mask	Exchange	Distribute/
instruction	Luau	- Out	Add	Subtra- ct	Multiply	Divide								CALIACE
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

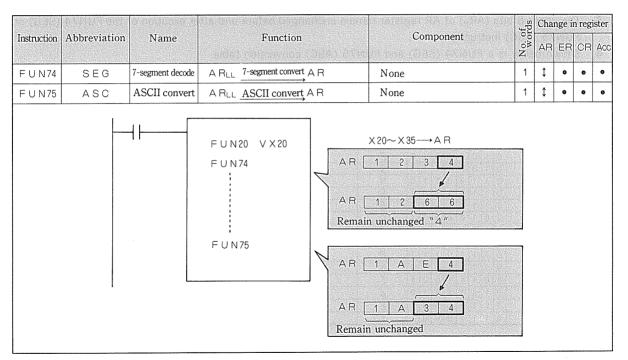

		and the second				of ords	Change in register						
Instruction	Abbreviation	Name	Fu	nction	Component	No. ow	AR	ER	CR	Acc			
F U N 23	ouc	Out carry	C→1/0		Υ, Μ	1	•	•	0	•			
FUN83	CLC	Clear carry	C ← 0		None	1	0	0	0	0			
F U N 84	SEC	Set carry	C←1		None	1		0	1	•			
		F U N10 F U N7. F U N23	200	T/C50 current val AR≧BCDconstar C→M550									

- 1. The FUN23 (OCU) instruction outputs carry C data to internal output (M) or external output (Y).
- 2. The FUN84 (SEC) instruction sets "1" to carry C. The FUN83 (CLC) resets carry C to "0"

Concept of arithmetic	Load	out	4-rı	ıle cal	culatio	ns	Logic	Compare	Carry	Convert	Shift	Mack	Evehango	Distribute/
instruction		out	Add	Subtra ct	Multiply	Divide	LUGIC	Compare	Carry	Convert	Jiiii	IAIGON	LAGIGINGE	extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149


					f.	Cha	nge i	n reg	ister
Instruction	Abbreviation	Name	Function	Component	No. of words	A R	ΕR	C R	Ac
FUN24	BCD	BCD convert	A RBCD convert A R	None	1	\$		\$	•
FUN25	BNR	BIN convert	ARBIN convert AR	None	1	‡	•	‡	0
		FUN	25	95H					

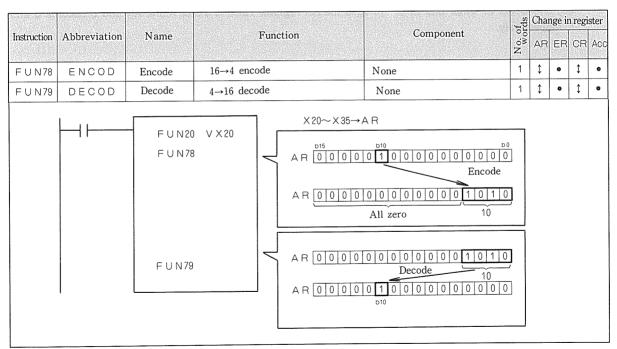
1. The FUN24 (BCD) instruction converts the binary data in the AR register into BCD data. If the result of conversion is 4 digits or less, carry C turns OFF.


If the result of conversion overflows 4 digits, the AR register data is not converted (the contents of register remain unchanged) and carry C turns ON.

2. The FUN25 (NR) instruction converts the BCD data in the AR register into binary data. When the AR register contains BCD data before conversion, carry C turns OFF.

Before conversion, each digit of the AR register must be value in the range of 0 to 9. If the AR register data is within A to F, it will not be converted (the contents of register remain unchanged) and the value of carry C will become unreliable.

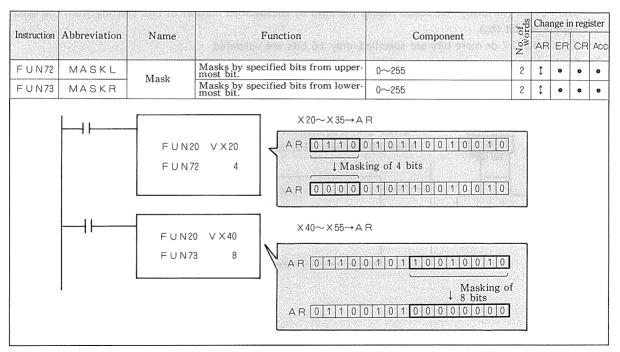
Concept of arithmetic	Load	out	4-ru	le calo	culatio	ns	Logic	Compara	Carry	Convert	Shift	Mask	Evchange	Distribute/
instruction		out	Add	Subtra- ct	Multiply	Divide	LUGIC	Compare	Carry	Convert	Jiii (Wask	LACHANGE	extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149


- 1. The FUN74 (SEG) instruction covers the lower 4 bit (AR_{LL}) data of AR register into a 7-segment display code and stores in the lower 8 bits (AR_L) of that register.
- 2. The FUN75 (ASC) instruction converts the lower 4-bit (AR_{LL}) data of AR register into an ASCII code and stores it in the lower 8 bits (AR_L) of that register.
- 3. The upper 8 bits $(AR_{\rm H})$ of AR register remain unchanged before and after excution of the FUN74 (SEG) or FUN75 (ASC) instruction.
- 4. Shown below is a FUN74 (SEG) and FUN75 (ASC) conversion table.

Input data				Fι	JN	74	(S	E	Э)	FUN75(ASC)
4 bits		C	ut	put	d				Display	Output data
		g	f	ø	d	С	ь	а	Dispiny	- 10
0	0	0	1	1	1	1	1	1	0	30
1	0	0	0	0	0	1	1	0	:	31
2	0	1	0	1	1	0	1	1	2	32
3	0	1	0	0	1	1	1	1	3	33
4	0	1	1	0	0	1	1	0	¥	34
5	0	1	1	0	1	1	0	1	5	35
6	0	1	1	1	1	1	0	1	5	36
7	0	0	1	0	0	1	1	1	17	37
8	0	1	1	1	1	1	1	1	8	38
9	0	1	1	0	1	1	1	1	9	39
Ā	0	1	1	1	0	1	1	1	8	41
В	0	1	1	1	1	1	0	0	b	42
C	10	0	1	1	1	0	0	1	Ξ	43
D	0	1	0	1	1	1	1	0	ď	44
E	0	1	1	1	1	0	0	1	E	45
F	10	+-	1	1	0	0	0	1	F	46

Display segments

Concept of arithmetic		out	4-rule calculations		ns	l ngic	Compare	Carry	Convert	Shift	Mask	Exchange	Distribute/	
instruction		out	Add	Subtra- ct	Multiply	Divide	=05.0	• • · · · · · · · · · · · · · · · · · ·	- Curry					EXITACL
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

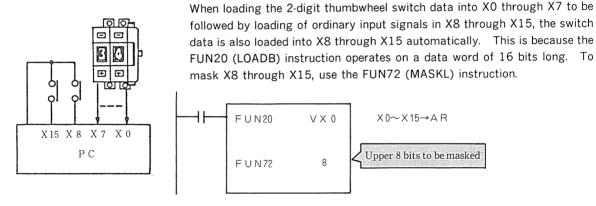

- 1. The FUN78 (ENCODE) instruction sets into the AR the uppermost bit position (1 to 15), where "1" is set, among the bits of the register. In case all bits are 0, AR and C become 0 and 1, respectivenly. When two or more bits are 1, the uppermost bit is selected.
- 2. The FUN79 (DECODE) instruction sets 1 at the bit position corresponding to the value of AR register (0to 15) and clears all other bits to 0. In case the AR register value is 16 or more, AR and C become 0 and 1, respectively.

Concept of arithmetic		011¢	4-ru	4-rule calculatio		ns	Logio	Campara	Carry	Canuaut	Ch:sa	Mock	Cuelenes	Distribute/
instruction		out	Add	Subtra- ct	Multiply	Divide	Logic	Compare	Carry	Convert	Shift	Wask	Exchange	extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

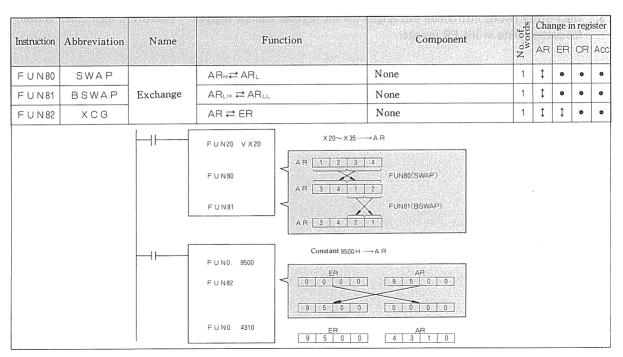
Instruction	A blancaria d'	Name			rds	Cha	nge i	n regi	ster
Instruction	Abbreviation	Name	Function	Component	No. of words	AR	ER	CR	Acc
FUN26	LSFR	Left shift	C← AR ←0	None	1	‡	0	‡	0
FUN27	RSFR	Right shift	0→ AR →C	None	1	1	0	1	0
FUN76	ROL	CW rotate	C← AR ←	None	1	1		1	0
F U N 77	ROR	CCW rotate	→ AR →c →	None	1	\$	0	‡	0
		FUI FUI	0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 10	0011101010100111 0 Rigi	otate				:

- 1. The Fun26 (LSFR) instruction shifts AR register data 1 bit to the left. Upon shift, the least significant bit is padded with zero and the overflow bit is set to carry C.
- 2. The FUN27 (RSFR) instruction shifts AR register data 1 bit to the right. Upon shift, the most significant bit is paddedwith zero and the overflow bit is set to carry C.
- 3. The FUN76 (ROL) instruction shifts AR register data 1 bit to the left. Upon shift, the overflow bit is set to carry C and the least significant bit is padded with the previous data in the carry C.
- 4. TheFUN 77 (ROR) instruction shifts AR register data 1 bit to the right. Upon shift, the overflow bit is set to carry C and the most significant bit is padded with the previous data in the carry C.

Concept of	Concept of arithmetic Load o		4-rule calculations		Logic	Compare	Carry	Convert	Chife	Mack	Exchange	Distribute/		
instruction		out	Add	Subtra- ct	Multiply	Divide	Lugic	Compare	Carry	Convert	Jiiit	IVIASK	Excitatige	extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

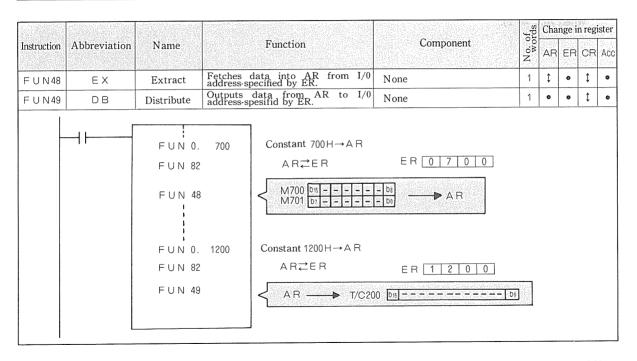

1. FUN72(MASKL) and FUN73 (MASKR) instructions mask the AR register data by the specified number of bits.

The FUN72 (MASKL) instruction masks the data by the specified number of bits starting from the most significant bit (b_{15}).


The FUN73 (MASKR) instruction masks the data by the specified number of bits starting from the least significant bit (b_0) .

Even when 17 or more bits are specified, only 16 bits are validated.

2. Application example of mask instruction



Concept of arithmetic	Load	ou.	4-ru	-rule calculations		Logic	Compare	Carry	Convert	Chift	Mack		Distribute/	
instruction		out	Add	Subtra- ct	Multiply	Divide	LUGIC	Compare	Carry	Convert	Jiiit	IVIASK	LACITATISE (extract
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

- 1. The FUN80 (SWAP) instruction exchanges the upper byte (b_8 through b_{15}) and the lower byte (b_0 through b_7) of the AR register.
- 2. The FUN81 (BSWAP) instruction exchanges the upper nibble (b_4 through b_7) and lower nibble (b_6 through b_3) of lower byte in the AR register.
- 3. The FUN82 (XCG) instruction exchanges the AR register and ER register. TheFUN82 instruction is used for setting data in the ER register.

Concept of arithmetic		out	4-rı	ıle cal	culatio	ns	Logic	Compare	Carry	Convert	Shift	Mack	Evchange	Distribute/ extract
instruction		out	Add Subtra-Multiply Divid	Divide	e Logic	Compare	Carry	Convert	Jiiit	Mask	LACHANGE	extract		
110	112	116	122	124	126	128	130	133	136	137	143	145	147	149

- 1. Data is to be exchanged between the I/O address-specified by the ER register and the arithmetic register AR. The ER register contains BCD data. The most significant digit 0 and 1 stand for usual I/O and timer/counter, respectively. FUN48 (EX) fetches data into AR, and FUN49 (DB) outputs data to I/O.
- 2. CR will become 1 if either instruction is executed with an undefined I/O specified by the ER register (only when Acc = 1).

1 PRINCIPLE OF PC

2 INPUT/OUTPUT AND NUMBERS

3 PROGRAMMING

3.1 Basic Instructions

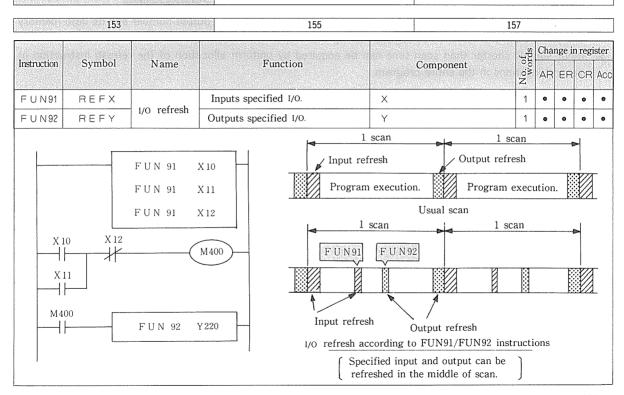
3.2 Application Instructions (I)

3.3 Arithmetic Instructions

3.4 Application Instructions (II)

Application Instructions (II)

Ęį						spu	Cha	ister	euce		
Classification	Instruction	Symbol	Name	Function	Component	No. of words	AR	ER	CR	Acc	Reference page
esh (FUN91	REFX	_	Refreshes specified input.	X	1	0	0	0	0	153
Refr	FUN92	REFY	I/O refresh	Refreshes specified output.	Υ	1	0	0	0	9	153
r <u>f</u>	FUN93	INT	Declares interrupt.	Argument Declares interrupt at fixed intervals of 10 ms.	Argument 2	2	_	_	_	-	155
Interrupt	FUN94	RTI	Recovery from	Recovery from interrupt	None	1	V al inte	ue b	efor	e	155
	FUN42	CALL		Calls subroutine.	Arguments 0 to 63	2	0	0	0	0	157
Subroutine	FUN43	SB	Subroutine	Defines subroutine.	Arguments 0 to 63	2	_	-	_	_	157
Subr	FUN44	RTS		Recovery from subroutine.	None	1	Value before subroutine call		e all	157	

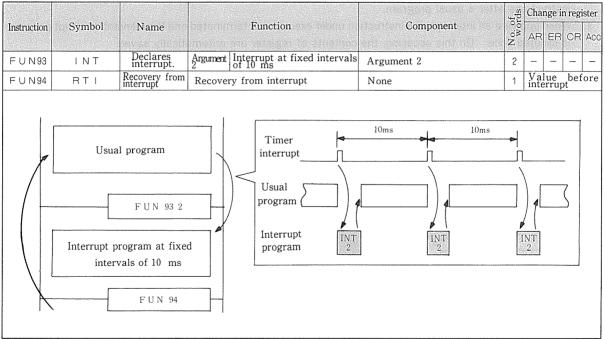

•: Register remains unchanged

1 : Register changed
- : Register cleared

I/O refresh

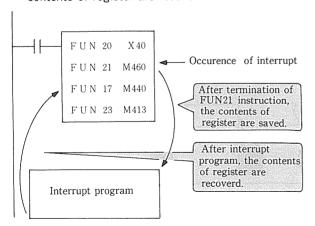
Interrupt

Subroutine


- 1. FUN91 (REFX) is imputrefresh instruction. It rewrites data memory of the specified input number in the course of scan (upon its execution). This instruction does not have a start condition.
- 2. FUN92 (REFY) is output refresh instruction. It rewrites the specified output number and its data memory the same as in the current Acc register during scan (upon its execution).
- 3. Input signals shorter than scan time can be acquired by uniform allocation of the refresh instruction at several locations in the entire program.

I/O refresh

Interrupt


Subroutine

153 155 157

- An interrupt program is to be located next to a usual program. These programs are to be separated by the FUN93 (INT) instruction. FUN99 (END) is not used. The end of interrupt program must always be the FUN94 (RTI) instruction. Neither FUN93 nor FUN94 requires start condition.
- 2. Interrupt program is excuted every 10 ms when it is written between the FUN93 2 (INT2) and FUN94 (RTI) instructions after a usual program.
- 3. When applying an interrupt, the instruction under execution is terminated and the relevant interrupt program is excuted once. On this occasion, the contents of register are automatically saved.

 After termination of the interrupt program, the usual program before interrupt program returns and the contents of register are recovered.

4. Interrupt instruction and jump instruction without adressing cannot coexist.

I/O refresh

Interrupt

Subroutine

	153		155		157				9 (3)
	C 1 1	NY			rds	Cha	nge in	ıregi	ster
Instruction	Symbol	Name	Function Control of the Control of t	Component	No. of words	AR	ER	CR	Acc
FUN42	CALL		Calls subroutine.	Arguments O to 63	2	9	0	0	0
FUN43	SB	Subroutine	Defines subroutine	Arguments O to 63	2	-			
FUN44	RTS		Recovery from subroutine	None	1	Va.	ue routi	bef-	ore
		FUN42 1 butine program FUN43 1	Calls subroutine. Start of subroutine						

- 1. Subroutine program is to be located next to the main routine program. At the head of subroutine program, the FUN43 (SB) instruction is required to be set. Each subroutine program must be terminated by the FUN44 (RTS) instruction. Subroutine can be called by the FUN42 (CALL) instruction.
- 2. The FUN99 (END) instruction is unnecessary between the main routine program and subroutine program. Neither FUN43 nor FUN44 requires the start condition.
- 3. In a subroutine, jump and master control instructions are unusable.