HITACHI PROGRAMMABLE CONTROLLER

CPU MODULE

	UCTION MA	
TYPE: CPU2-20	H CPU2-07H	CPU2-03H
CPUP-20	DH CPUP-07H	CPUP-03H
CPU-20H	Ha CPU-07Ha	CPU-03Ha
NOTICE : Make sure to have	this manual available to th	e person directly responsible

NOTICE : Make sure to have this manual available to the person directly responsible for use and maintenance of this unit. After installation and initialization, file the manual for future reference.

Hitachi, Ltd.

Warranty Period and Scope of Warranty

The warranty period of the delivered Module is one (1) year after delivery to the place specified by the purchaser. Should any failure occur during this warranty period during use under normal working conditions within the range of the product specification in accordance with the instructions given in this instruction manual, repair or replacement of the failed portion(s) will be made at no cost to the purchaser.

However, if said failure occurred due to any of the following factors, it will be excluded from the scope of this warranty.

- (1) The failure was caused by improper handling and/or use by the user.
- (2) The failure was caused by an external factor.
- (3) The failure was caused by modification or repair made by other than the supplier.
- (4) the failure was caused by natural calamities or disasters for which the supplier is not responsible.

The warranty in this case menas warranty of the delivered article alone, and damage induced by a failure of the delivered article will not be covered by the warranty.

Repair for Value

Investigation and repair will be made for value in all cases after said warranty period has elapsed. Even during the warranty period, repair and investigation for the cause of the failure (except for the case where it is covered by warranty) for the reasons outside of the scope of warranty stated above will be made for value by your dealer.

Placement of Orders for Parts and Inquiries

Kindly inform the following particulars to your dealer on occurrence of a failure to the product, for placement of orders for parts and/or for other inquiries.

- (1) Type
- (2) Manufacturing No. (MFG. No.)
- (3) Description of failure

The contents of this manual may be modified without previous notice.

CONTENTS

			ł	age
1.	1/0	SIGNALS	•	1
	1.1	About I/O Signals	•	1
	1.2	I/O Assignment	•	3
	1.3	I/O Storage during Power Outage	•	6
	1.4	Internal Special Outputs	•	7
	1.5	Rules for External I/O Assignment	•	10

[1] Application Command

-

CONTENTS - (cont'd)

	BIN (d, S)	44
	DECO (d, S, n)	45
	ENCO (d, S, n)	46
	SEG (d, S)	48
	SQR (d, S)	50
	BCU (d, S)	51
	SWAP (d)	52
	FIFIT (P, n)	53
	FIFWR (P, S)	54
	FIFRD (P, d)	55
	UNIT (d, S, n)	56
	DIST (d, S, n)	58
	ADRIO (d, S)	60
[2]	Control command	
	END	61
	CEND (S)	62
	JMP n	63
	СЈМР п (S)	64
	RSRV n	65
	FREE	68
	LBL n	69
	FOR n (S)	70
	NEXT n	72
	CAL n	75
	SB n	76
	RTS	77
	INT n	78
	RTI	79
	START n	82
[3]	Transfer Command for Sophisticated Function Module	
	TRNSO (d, s, t)	83
	RECVO (d, s, t)	

CONTENTS - (cont'd)

Pa	ge
_	

TRNS1 (d, s, t) (QTRNS1 (d, s, t)) 105
TRNS2 (d, s, t) (QTRNS2 (d, s, t)) 119
TRNS3 (d, s, t) 126
RECV3 (d, s, t) 131
QTRNS3 (d, s, t) 139
TRNS4 (d, s, t) 147
QTRNS4 (d, s, t) 158
TRNS5 (d, s, t) 167
TRNS6 (d, s, t) 173
[4] FUN Command
FUN 10 (S) *(SIN (S)) 180
FUN 11 (S) *(COS (S)) 181
FUN 12 (S) *(TAN (S)) 182
FUN 13 (S) *(ASIN (S)) 183
FUN 14 (S) *(ACOS (S)) 184
FUN 15 (S) *(ATAN (S)) 185
FUN 20 (S) *(DSRCH (S)) 186
FUN 21 (S) *(TSRCH (S)) 187
FUN 30 (S) *(BINDA (S)) 188
FUN 31 (S) *(DBINDA (S)) 189
FUN 32 (S) *(BINHA (S)) 190
FUN 33 (S) *(DBINHA (S)) 191
FUN 34 (S) *(BCDDA (S)) 192
FUN 35 (S) *(DBCDDA (S)) 193
FUN 36 (S) *(DABIN (S)) 194
FUN 37 (S) *(DDABIN (S)) 195
FUN 38 (S) *(HABIN (S)) 197
FUN 39 (S) *(DHABIN (S)) 198
FUN 40 (S) *(DABCD (S)) 199
FUN 41 (S) *(DDABCD (S)) 200

 FUN 42 (S) *(ASC (S))
 201

 FUN 43 (S) *(HEX (S))
 203

 FUN 44 (S) *(SADD (S))
 205

CONTENTS - (cont'd)

FUN	45	(S)	*(SCMP	(S))	• • •	• • • •	• • • • •			• • • • • •	207
FUN	46	(S)	*(WTOB	(S))	• • •	• • • •					209
FUN	47	(S)	*(BTOW	(S))	• • •	• • • •				••••	210
FUN	48	(S)	*(BSHR	(S))	• • •	• • • •					211
FUN	49	(S)	*(BSHL	(S))	• • •	• • • •				••••	213
FUN	50	(S)	*(TRSET	: (s))		• • • •					215
FUN	51	(S)	*(TRASE	c (s))	•••	• • • •				••••	216
FUN	52	(S)	*(TRRES	s (s))		• • • •				••••	217
FUN	60	(S)	*(BSQR	(S))	• • •	• • • •				• • • • • •	219
FUN	61	(S)	*(PGEN	(S))	• • •	• • • •		• • • • •			220
FUN	254	4 (S)) *(вохо	: (s)))					••••	222
FUN	255	5 (S)) *(MEMC	; (s))		• • • •		• • • • •		••••	223
FUN	0 ((S) *	(PIDIT	(S))	•••			• • • • •		••••	225
FUN	1 ((S) '	(PIDOP	(S))	• • •	• • • •			• • • •	••••	227
FUN	2 ((S) '	(PIDCL	(S))	• • •	• • • •					228

Page

CAUTION

This software manual includes Application commands, Transfer commands and FUN instructions of H-SERIES CPU modules.

But, this software manual does not include Basic command and Arithmetic command.

So, please refer to "HI-LADDER/HI-COMMAND PROGAMMING MANUAL" (Manual No.:NB9913X) for the Basic command and Arithmetic command of H-SERIES CPU modules.

INTRODUCTION

1. I/O SIGNALS

1.1 About I/O Signals

There are three types of I/O signals.

(1) External I/O area

The PC transfers signals to and from external devices via I/0 modules.

(2) Internal I/O area

Data is transferred in registers in the PC.

(3) CPU link area

Data is transferred to and from another CPU at CPU link time.

For these three signals, data is handled in bits, words (16 bits), or double words (32 bits).

		Bit data	Word data	Double-word data
External I/O area	Input	x		
170 alea	Output	Y 00000	WY COO	
Internal	I/O area		-	-
		_	WR OOOO	
				DM 🗆 🗆
CPU line	area	r 98880	WI. 0000	DL CICICI

Table 1.1 H-series PC I/O Table

- o An I/O number is assigned to □ □ □ in the above table. For external I/O assignment (including remote external I/O assignment), see Section 1.5, "Rules for External I/O Assignment."
- o Bit data, word data, and double-word data on the same line in the above table have mutual relationships.
- o The area for X, WX, and DX are shared by bit data and word data. This is also true for the area for Y, WY and DY, the area for M, WM and DM, and the area for L, WL and DL.

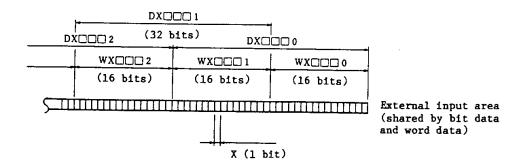


Figure 1.1 Relationship between X, WX, and DX

(This figure also applies to relationship between Y, WY, and DY, relationship between M, WM, and DM, and relationship between L, WL, and DL.)

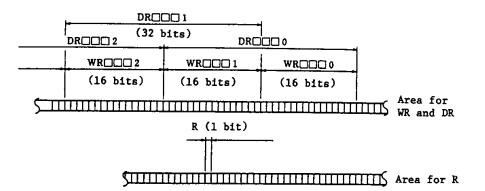


Figure 1.2 Relationship between R, WR, and DR

- o R and the WR and DR pair use different areas. In the area for WR, bit manipulation is not allowed.
- o To perform bit manipulation in the internal output area, use the area for M, WM, and DM shared by bit data and word data.
- o If a system using the CPU link module (see Section 2.4, "CPU Link System" in the hardware manual) is not used, the CPU link area (L, WL, and DL) can be used as the internal output area shared by bit data and word data.

1.2 I/O Assignment

Explanation of columns in the table below

Size column:	B: Bit W: Word (16 points) D: Double-word (32 points)
Point count column:	This column indicates the maximum number of points that can be used when only bits are used. In word notation, the column indicates the maximum number of words that can be used when only words are used.
I/O assignment:	This column indicates the assignable range. For external I/O assignment, see Section 1.5, "Rules for External I/O Assignment."

Table 1.2 I/O Assignment

Func	tion	Symbol	Size	Name	Point count	1/0 assignment	Remarks
Ex- ternal	Ex- ternal	x	В	External bit input	4,096 points	X IOIU IS b	u: Unit number (0 to 5) s: Slot number (0 to A
I/O	I/O	Y	B	External bit output	(256 words)	Y Ous b	in hexadecimal) b: Intra-module bit
		WX	W	External word input		WY!Olu smi	number (00 to 95 in decimal)
		WY	W	External word output		WY 0 u sim	m: Intra-module word number (0 to 7. For
		DX	D	External double-word input		DXIO u sm	DX and DY, however, 0 to 6)
		DY	D	External double-word output		DY Olu sm	Storage is not possible during power outage.
	Remote ex-	x	B	Remote external bit input	2,048 (128 words) (Up to 512	Y r St s b	r: Remote host station number (1 to 4) St: Remote substation
	ternal I/O	Y	В	Remote external bit output	points for one host station)	Y r Stis b	s: Slot number (0 to 9) s: Slot number (0 to 9) b: Intra-module bit
		WX	W	Remote external word input		WY r Stis m	number (00 to 95 in decimal) a: Intra-module word
		WY	W	Remote external word output		WY1r St sm	number (0 to 7. For DX and DY, however, 0 to 6)
		DX	D	Remote external double-word input		DX riSt s m	Storage is not possible during power outage.
		DY	D	Remote external double-word output		DYITISTISm	during pour dunger

Func	tion	Symbol	Size	Name	Point count	I/O assignment	Remarks	
CPU lin	k area	L	В	Bit CPU link area 1	16,384	L 0 - 3FFF	Numbers are in hexadecimal.	
		WL	W	Word CPU link area l	points (1,024 words)	WL 0 - 3FF	Storage is not possible during power outage. When the CPU changes from the stop state to	
		DL	D	Double-word CPU link area l	words/	DL 0 – 3FE		
		L	B	Bit CPU link area 2	16,384 points (1,024	L 10000 - 13FFF	the run state, however, storage is not cleared.	
		WL	W	Word CPU link area 2	words)	WL 1000 - 13FF		
		DL	D	Double-word CPU link area 2		DL 1000 - 13FE		
In- ternal output	In- ternal bit output	R	В	Internal bit output	1,984 points	R 0 - 78F	Storage is possible during power outage. Numbers are in hexadecimal.	
		R	В	Internal special bit output	64 points	R7C 0 ~ 7FF	Storage is always possible during power outage. Numbers are in hexadecimal.	
	In- ternal	WR	W	Internal word output	a. 1,024 words	WR 0 - 3FF	a. RAM*-04H, RAM*-08H,	
	word output				words	DR 0 – 3FE	b. RAM*-16H, ROM*-16H, c. RAM*-48H, ROM2-48H.	
	oucput				b. 17,408 words	WR 0 - 43FF	An asterisk (*) is omitted or replaced with	
		DR	D	Internal double-word output	WOLDS	DR 0 - 43FE	2 or 3. Numbers are in	
					c. 50,176 words	WR 0 - C3FF	hexadecimal. Storage is possible	
						DR 0 - C3FF	during power outage. If a range exceeding the capacity on the left is read, 0 is assumed.	
		WR	W	Internal special word output	512 words	WR F000 - F1FF	Storage is always possible during power	
		DR	DF	Internal special double-word output		DR F000 - F1FE	outage. Numbers are in hexadecimal.	
	Data area	M	В	Bit data area	16,384	M 0 – 3FF	Storage is possible	
		WM	W	Word data area	points (1,024	WM 0 - 3FF	during power outage. Numbers are in hexadecimal.	
		DM	D	Double-word data area	words)	DM 0 - 3FE	IRAQUECIMAL.	
Others	Edge detec-	DIF	B	Rise edge detection	512 points	DIF 0 - 511	Storage is possible	
	tion	DFN	В	Fall edge detection	512 points	DFN 0 - 511	during power outage. Numbers are in decimal. (Duplicated numbers cannot be used except for DIFO and DFNO.)	

.

Function		Symbol	Size	Name	Point count	I/O assignment	Remarks
Others	Master	MCS	В	Master control set	50 points	MCS 0 - 49	Numbers are in decimal.
	con- trol	MCR	В	Master control reset		MCR 0 - 49	
	Timer	TD	В	On-delay timer	512 points	TD 0 - 255	Storage is possible
	coun- ter	SS	В	Single-shot timer	(256 points or less for the timer)	SS 0 - 255	during power outage. Numbers are in decimal.
		WDT	В	Watchdog timer	WDT 0 - 255 MS 0 - 255 TMR 0 - 255 CU 0 - 511	Use CTU, CTD, and CT up/down counters in	
	-	MS	В	Monostable timer		MS 0 - 255	combination.
		TMR	В	Accumulation timer		The same timer counter number must not be used	
	•	Cυ	В	Up counter		twice or more.	
		RCU	В	Ring counter		RCU 0 - 511 CTU 0 - 511	Only timers 0 to 63 can use 0.01 s as the time
		СТИ	В	Up/down counter increment			base.
		CTD	В	Up/down counter decrement		CTD 0 - 511	
		СТ	В	Up/down counter output		CT 0 - 511	
		WT	-	Wait timer (HI-FLOW)		WT 0 - 255	
		ΡT	-	Parallel timer (HI-FLOW)	512 points	PT 0 - 255	
		CN	-	Loop timer (HI-FLOW)		CN 0 - 511	
		CL	В	Elapsed count clear		CL 0 - 511	
		TC	W	Timer counter elapsed time	512 words	TC 0 - 511	_
	Con- stant	-	W	Decimal word constant		0 - 65 535	Singed numbers from -32,768 to 32,767
		-	D	Decimal double-word constant]	0 - 4 294 967 295	Signed numbers from -2,147,483,648 to 2,147,483,647
	н	W	Hexadecimal word constant		H0000 - HFFFF		
		H	D	Hexadecimal double-word constant		H00000000 - HFFFFFFF	
	1	-	B	Bit constant		0 or 1	

- 5 -

.

1.3 I/O Storage during Power Outage

Usually, internal outputs are cleared when the PC starts operation. The internal outputs listed in Table 1.3 are retained unless the maximum number of points stored during power outage is exceeded. For operations, see the instruction manual for GPCL and PGM peripherals.

I/O type	Maximum number of points stored during power outage	I/O range	Remarks
Internal bit output	1,984 points	R000 - 7BF	
Internal word output	1,024 words	WR0000 - 03FF	RAM-04H, -08H RAM2-04H, -08H RAM3-08H
	17,408 words	WR0000 43FF	RAM-16H, ROM-16H RAM2-16H, RAM3-16H RAM2-16H, ROM2-16H
	50,176 words	WR0000 - C3FF	RAM-48H, ROM2-48H RAM2-48H, RAM3-48H
Bit and word shared internal output	16,384 points (1,024 words)	M0000 - 3FFF (WM000 - 3FF)	
Rise edge detection	512 points	DIF 0 - 511	
Fall edge detection	512 points	DFN 0 - 511	
Timer counter	512 points	TD 0 - 511	Elapsed time indicated by the timer counter. TCO to TC511 are also retained.

Table 1.3	I/0	Storage	during	Power	0utage
-----------	-----	---------	--------	-------	--------

1.4 Internal Special Outputs

(1) Functions

Internal special outputs are divided into internal special bit outputs (R7CO to R7FF) and internal special word outputs (WRF000 to WRF1FF). They have the following functions and purposes:

Function	Purpose	Example
[1] Control the system status.	Permit execution of CPU functions.	Remote run enabled (R7C3) Debug enabled (R7C5)
	Set conditions to start and stop CPU operation.	Continued processing during cycle time over (R7CO)
[2] Record the system status.	Record CPU error types and details of errors. Record the system status.	<pre>I/O information mismatching (R7CD) I/O information mismatching details (WRF002) Self-diagnostic error (R7DB) Self-diagnostic error details (WRF000)</pre>

Table 1.4 Functions of Internal Special Outputs

In item [1] above, the CPU always checks the contents of internal special outputs during operation. For this reason, the user can forcibly set or reset internal special output data to permit execution of CPU functions, set operation conditions, and perform other functions.

In item [2] above, the CPU always records the system operation status in internal special outputs. The user can check the system status by monitoring the appropriate internal special output.

Notes

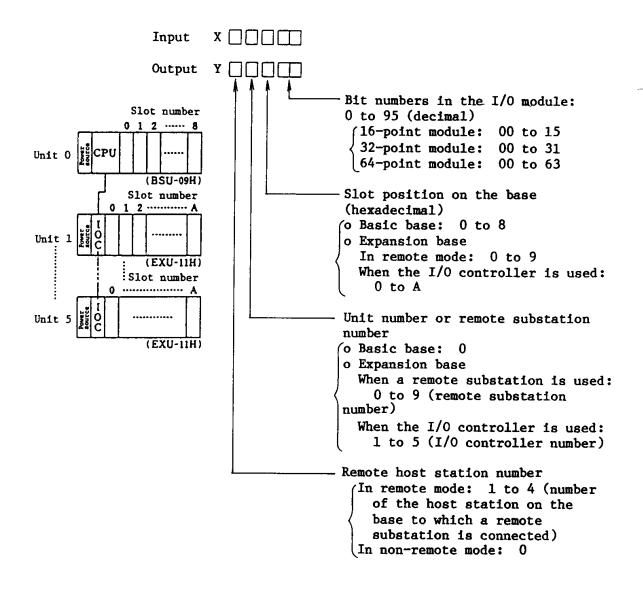
- 1) Check the set and reset conditions before setting data in internal special outputs. Particularly, do not set data in the areas where the system sets data.
- 2) Do not use the internal special bit outputs (R7CO to R7FF) and internal special word outputs (WRF000 to WRF1FF) as normal outputs (coils and arithmetic boxes).

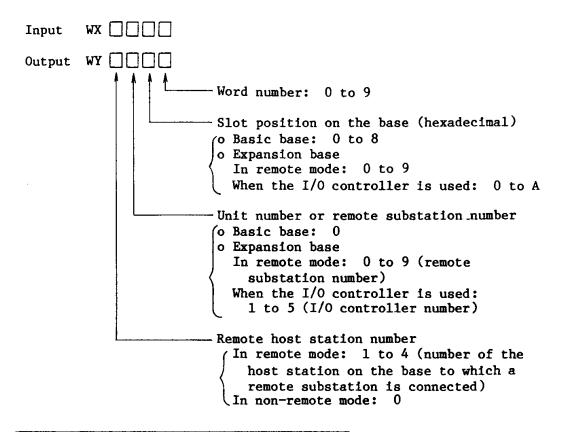
(2) Internal special outputs

	Contents	ON	OFF
R7C0	Continued processing during cycle time over (normal scan)	1	
R7C1	Continued processing during cycle time over (periodic scan)	1	
R7C2	Continued processing during cycle time over (interrupt scan)	1	
R7C3	Remote Run enabled	ែរ	
R7C4	Remote Stop enabled	1	
R7C5	Debug enabled		
R7C6	Simulation enabled		
R7C7	Enabled modification during run		υ
R7C8	Severe error		[
R7C9	Sequence processor error		
R7CA R7CB	User memory error PI/O bus error		
R7CB		S	Ì
R7CD	Too large memory size I/O module I/O information mismatching	ł	
R7CE	Communication module I/O information mismatching		
R7CE	(Undefined)	<u> </u>	
R7D0	Remote error	<u>↓ – – </u>	
R7D1	Cycle time over error (normal scan)	ł	
R7D2	Cycle time over error (periodic scan)	ł	
R7D3	Cycle time over error (interrupt scan)	ł	1
R7D4	Syntax or assemble error	ł	
R7D5	I/O module error	1	
R7D6	Excessive point assignment	1	1
R7D7	Communication module error	s	
R7D8	System bus error	1	U
R7D9	Battery error]	1
R7DA	Instantaneous power outage detection]	
R7DB	Self-diagnostic error]	
R7DC	(Undefined)		
R7DD	Excessive communication module assignment		
R7DE	Link module error		
R7DF R7E0	Operation enabled at HI-FLOW assembler error Mode key switch in STOP position	U	<u> </u>
R7E1	Mode key switch in REMOTE position		s
R7E2	Mode key switch in RUN position	4	5
R7E3	Single scan ON after RUN	1	
R7E4	Always ON	1	x
R7E5	0.02-s clock	s	
R7E6	0.1-s clock		
R7E7	1-s clock	t	
R7E8	Occupancy flag	1	S
R7E9	Disabled RUN]	
R7EA	Modification during RUN		
R7EB	Segment display clear		
R7EC	Internal special erroneous output clear	U	U
R7ED	1/0 reset during HI-FLOW debug RUN		
R7EE	(Undefined)	-	- 1
R7EF	(Undefined)		ļ
R7F0 R7F1	Carry flag (CY) Overflow (V)	1	
R7F2	Shift data (SD)	s	s
R7F3	Calculation error (ERR)	5	3
R7F4	Data error (DER)		
R7F5		· · · ·	
5	(Undefined)	-	_
R7F7	· · · · · · · · · · · · · · · · · · ·		
*R7F8	Request to read calendar clock	·	h
*R7F9	Request to set calendar clock	U	
*R7FA	Request to adjust calendar clock		s
*R7FB	Incorrect calendar clock setting		I
*R7FC	Trigger condition matching flag	S	U
A	Trace monitor flag	1	S
*R7FD			
*R7FD *R7FE *R7FF	(Undefined)	-	-

.

The user must control U. S is controlled by the system. The user must not control S. * Valid when CPU2-**H is combined with RAM2-**H, RAM3-**H, or ROM2-**H.


1/0 No.	Contents	ON	OFF
WRF000	Self-diagnostic error code		
WRF001	Syntax and assembler error details		
WRF002	I/O module I/O information mismatching details		
WRF003	Communication module I/O information mismatching details	S	ប
WRF004	Invalid communication module slot number		
WRF005	Invalid I/O module slot number		
WRF006	Invalid remote I/O slot number	1	
WRF007	Invalid link module slot number		
WRF008	(11-1-641)	-	_
) WRFOOA	(Undefined)		
*WRF00R	Calendar clock reading (year)		
*WRFOOC	Calendar clock reading (month, day)		
*WRF00D	Calendar clock reading (week)	1	
*WRFOOE	Calendar clock reading (hour, minute)]	
*WRF00F	Calendar clock reading (second)]	S
WRF010	Maximum scan time]	
WRF011	Current scan time		
WRF012	Minimum scan time	s	
WRF013	CPU status		
WRF014	Internal word output capacity		
WRF015	Calculation error code	4	U
WRF016	Residue register (low-order)	1	
WRF017	Residue register (upper-order)	4	
WRF018		-	S
WRF019	BASIC status		
WRF01A	(Undefined)	-	
*WRF01B		4	
*WRF01C	Calendar clock reading or setting (month, day)	4	
*WRF01D	Calendar clock reading or setting (week)	4	1
*WRF01E	Calendar clock reading or setting (hour, minute)		
*WRF01F	Calendar clock reading or setting	-	
WRF020	Communication module slot-0 status	S	S
WRF021		-	
\$		-	
WRF030	Communication module slot-8 status	1	1
WRF031			<u> </u>
WRF032		_	l _
	(Undefined)		
WRF03F		-	1
WRF040	· · ·		
WRF041			
WRF042	5	-1	
ہ WRF049		s	s
WRF04A	÷	1	
WRF04B		1	
WRF04C			
WRF04D		1	ļ
WRF04E WRF04F			
wrru4r {	(Undefined)	-	-
wrf07f			
WRF07F WRF080			
wkruou {	Remote host-1 error flag		1
) WRF097		}	1
WRF098		7	
(Remote host-2 error flag		
) WRFOAF	-		
WRFOBO		7	1
	Remote host-3 error flag	1	
WRFOC7		s	S
WRFOCE			
5	Remote host-4 error flag		
WRFODE	-	1	
WRFOED			1
5	Link-1 error flag		1
WRF13	=	_	
WRF140			
5	Link-2 error flag		
WRF191	=		-
MICT T > 1			
WRF1A(
	(Undefined)	-	-
WRF1A((Undefined)	-	-


1.5 Rules for External I/O Assignment

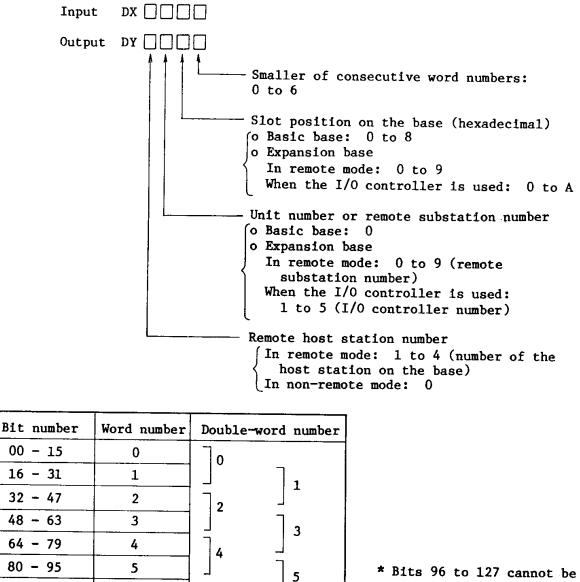
External outputs consist of X and Y in bits, WX and WY in words (16 bits), and DX and DY in double-words (32 bits).

These external outputs are assigned according to types of inputs and outputs, classification as to whether the I/0 is basic, extended or remote I/0, the slot position, and bit and word numbers in the module.

(a) Bit I/O number

Bit number in the I/O module	Word number
00 - 15	0
16 - 31	1
32 - 47	2
48 - 63	3
64 - 79	4
80 - 95	5
[96 - 111]*	6
[112 - 127]*	7

* Bits 96 to 127 cannot be accessed in bit units. They can be accessed only in word units.

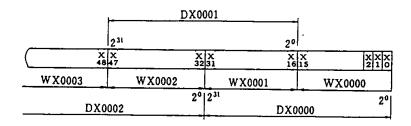

(c) Double-word I/O number

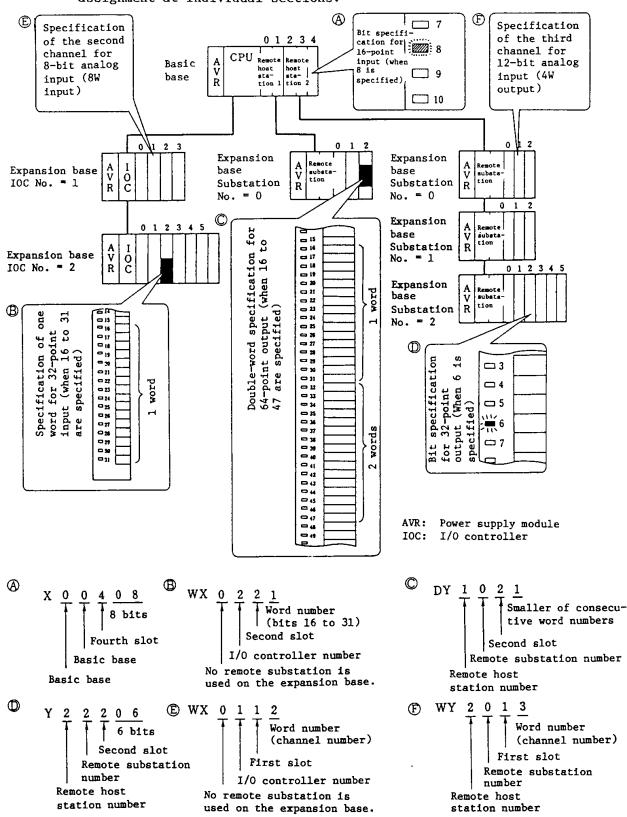
[96 - 111]*

[112 - 127]*

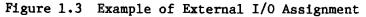
6

7




Bits 96 to 127 cannot be accessed in bit units. They can be accessed only in word units.

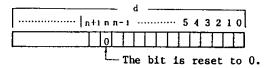
(d) Relationship between bits, words, and double-words (areas shared by bits and words)


In the following example, X, WX, and DX are used.

6

The following system is used to show an example of external I/O assignment at individual sections.

[1] Application Command


 	 	 	 	 · · · ·	 	

[Name] Bit reset

La	dder format			Con	diti	on	code					Proce	ssin	g ti	me (µ	s)	Remarks		
BR	ES (d, n)	R7F4	R	7F3	R7	'F2	R7F1	R7	'FO		H-2000			H-700/300			The upper values are values when		
		DER	E	ERR	s	D	v	C	;	Aver	Average		Maximum		rage	Maximum	d indicates a		
				•	•					7.2		+		13.8 17.1			word and the lower values are		
		•					•	• •	-							+	values when d indicates a double word		
Co	mmand format No. of st			ste	ps			н–2002				H-702/302			double word.				
BR	ES (d, n)	С	ond	iti	ons		St	ep		Aver	age	Maxi	au	Ave	rage	Maximum			
				_				3			0	+		11.5		+			
				-				•		7.	2			14	.2				
					B	lit				Wo	ord		Dou	ble	word				
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		wx	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other		
d	I/O with bit reset	8								0	o	0		0	0				
n	Bit position be reset	to							0	0	o	0				o	The constant is specified in decimal.		

. The "n"th bit of the I/O (word or double word) specified by d is set to 0.

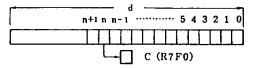
. The contents of the other bits are not changed.

When d indicates a word:

. The bit position is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)

. One of 0 to 15 can be specified as n (constant). (Decimal)

When d indicates a double word:


• The bit position is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)

. One of 0 to 31 can be specified as n (constant). (Decimal)

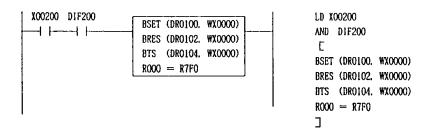
[[]Name] Bit test

Ladder format		C	Cond	lition	code		1		Pro	essi	ng t	ime (µ	s)	Remarks	
BTS (d, n)	R7F4	R	7F3	R7F2	R7F1	R7F0		H-2000				H -7 00	/ 300	The upper values	
	DER	EF	RR	SD	v	С	Av	erage	Ma	imun	Av	erage	Maximum	are values when d indicates a	
		1	•			t	8.2				16.0			word and the lower values are	
	•			-		↓	1	10.0		+		9.6	+ +	values when d indicates a double word.	
Command format No. of			of st	eps			H-	-2002			K-702	2/302	double word.		
BTS (d, n)	Co	ondi	ltid	ons	St	ep	Av	erage	Ma	imum	Av	erage	Maximum		
	-					3						3.3	- +		
									3.3		1	6.3	4 4		
				Bit				Word		Do	uble	word			
Usable I/O		x	Y	L,] }	D,SS,WI IS,TMR,(.CU,CT		x W	Y WI WI	, T	: DX	DY	DR, DL, DM	Constant	Other	
d I/O to be te	sted						0		0	1	0	0	1		
n Bit position be tested	i to				-	c	C		0				0	The constant is specified in decimal.	

- . The contents of the "n"th bit of the I/0 (word or double word) specified by d are checked. When the contents are 1, C (R7F0) is set to 1. When the contents are 0, C (R7F0) is reset to 0.
- . The contents of d are not changed.

When d indicates a word:

. The bit position is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)


. One of 0 to 15 can be specified as n (constant). (Decimal)

When d indicates a double word:

• The bit position is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)

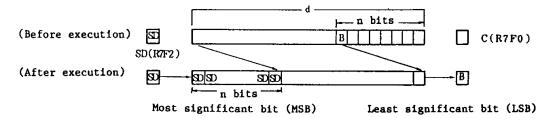
. One of 0 to 31 can be specified as n (constant). (Decimal)

[Program example]

[Program explanation]

When WX0000 = H1234 at the leading edge of X00200 (WX0000 = 0001001000110100)

20 (decimal)


Assuming that DR0100 = H00000000, DR0102 = HFFFFFFF, and DR0104 = H5555AAAA are set, at the leading edge of X00200: the 20th bit of DR0100 is set to 1 by BSET, b31 — b20 —— — ьо 1 This bit is set to 1. the 20th bit of DR0102 is reset to 0 by BRES, and b31 --- b20 ---- b0 t This bit is reset to 0. the 20th bit of DR0104 is checked by BTS. b31 --- b20 -----— ю 1 This bit is checked. Since the 20th bit is 1, C (R7F0) is set to 1.

[Name] Shift right

La	dder format		C	Cond	liti	on	code					Proce	ssin	g ti	me (µ	s)	Remarks		
SH	R (d, n)	R7F4	R	7F3	R 7	F2	R7F1 R7		FO	н-2000					H -7 00	/300	The upper values		
		DER	EF	RR	SD	D	v	С		Aver	age	Maximum		Average		Maximum	are values when d indicates a		
									•	16.6		5 18.		33.4		36.7	word and the lower values are		
		•	•				•		ł	27.2		33.1		55.7		68.5	values when d indicates a		
Со	Command format No. of s		ste	ps				H-2	002	02 H·			/ 302	double word.					
SHR (d, n)		Co	ondi	itio	ons		St	ep		Average Max		Maxi	ոսա	Average		Maximum			
		_					3			13.8		15.	15.1		7.8 30.6				
	-						د			22.7		27.6		46.4		57.1			
			Bit							Word			Double word			A			
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		wx	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other		
d	I/O to be shifted									0	0	0		0	0	· · · · · · · · · · · · · · · · · · ·			
n	No. of bits be shifted	to							0	0	o	0				0	The constant is specified in decimal.		

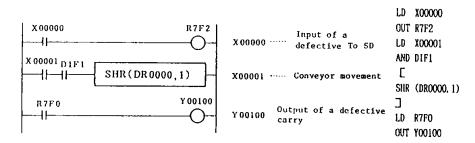
[Function]

- . The contents of d are shifted right (low-order direction) n bit positions.
- . The SD (R7F2) contents are set in n bits from the most significant bit.
- . The contents of the "n"th bit from the least significant bit are set in C (R7F0).

When d indicates a word:

. The shift amount is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)

. One of 0 to 15 can be specified as n (constant). (Decimal)

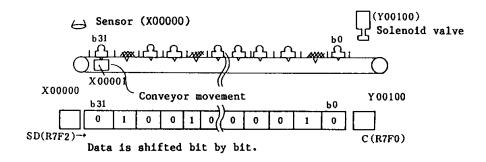

When d indicates a double word:

- . The shift amount is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 31 can be specified as n (constant). (Decimal)

[Precautions]

. When n = 0, the contents of d are not shifted. C holds the previous status.

[Program example]



[Program explanation]

- . A conveyor with 32 stands moves to the right.
- . Whenever one stand moves to the right, 1 pulse is supplied to X1.
- A sensor is mounted at the left end of the conveyor. When a defective is put on the conveyor, X00000 is turned ON. The X00000 (sensor input) and X00001 (conveyor movement) signals are as follows:

X00000	 	
X00001		

. When the conveyor moves to the right, data is shifted bit by bit. When the data is outputted to the carrier (at the right end of the conveyor), the (Y00100) solenoid value is turned ON and the defective is ejected.

[Name] Shift left

La	adder format			Con	diti	lon	code					Proce	ssin	ng ti	ime (µ	s)	Remarks
Sł	iL (d, n)	R7F4	R	7F3	R	7F2	R7F1	R7F1 R7F0) н-2000					/300	The upper values
		DER	E	RR	S	SD	v	С		Aver		Maxi	สมส	Ave	erage	Maximum	are values when d indicates a
						•		t t		16.		18.1		33.4		36.7	word and the lower values are
		•	•		.		•	+	27.2		33.1		55.7		68.5	values when d indicates a	
Co	ommand format		No. of steps							H-2	002			H - 702	/302	double word.	
Sł	L (d, n)	C	ond	iti	ons		St	ер		Aver	age	Maxi	mum	Ave	rage	Maximum	
				_			3			13.	8	15.	1	27	.8	30.6	
								22.7		.7 27		6 46.4		.4	57.1		
					B	lit				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C J,CT		WX	WY	WR, WL, WM	1	DX	DY	DR, DL, DM	Constant	Other
d	I/O to be shifted									0	0	o		o	0		
n	No. of bits be shifted	to							0	0	o	0				0	The constant is specified in decimal.

[Function]

- . The contents of d are shifted left (high-order direction) n bit positions.
- . The SD (R7F2) contents are set in n bits from the least significant bit.
- . The contents of the "n"th bit from the most significant bit are set in C (R7FO).

C(R7F0) (Before execution)	d		SD(R7F2)
(After execution) B	-	suspsusp	-SD
Most sig	nificant bit (MSB)	Least significa	int bit (LSB)

When d indicates a word:

- . The shift amount is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 15 can be specified as n (constant). (Decimal)

When d indicates a double word:

- . The shift amount is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 31 can be specified as n (constant). (Decimal)

[Precautions]

. When n (shift amount) is 0, the contents of d are not shifted. C holds the previous status.

4
,
1

La	lder format		(Conc	litic	on d	code		1			Proce	ssin	g ti	me (µ	s)	Remarks
RO	R (d, n)	R7F4	R	7F3	R 7E	72	R7F1	R71	FO	н-2000			H -70 0	/ 300	The upper values		
		DER	E	RR	SI	5	v	с		Aver	age	Maxi	ແມກ	Ave	rage	Maximum	are values when d indicates a word and the lower values are
			╀			-			•	15.	9	19.	6	32	.4	40.6	
		•		•	•		•			25.	0	33.	0	51	.4	69.0	values when d indicates a double word.
Co	mmand format		 1	No.	ofs	stej	ps	J			H-2	002			H-702	/ 302	double word.
RO	R (d, n)	C	ond	itie	ons		St	ер		Aver	age	Maxi	ພັບໝ	Ave	rage	Maximum	
										13.	2	16.	3	27	.0	33.8	
				-			3			20.	8	27.	5	42	.8	57.5	
		1			Bi	it			4	Wo	rd		Dou	ble	word		
	U sable I/ O	-	x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
d	I/O to be rotated									0	0	0		o	0		
n	No. of bits be rotated	to							0	0	0	0				0	The constant is specified in decimal.

[Name] Rotate right

[Function]

- . The contents of d are rotated right (low-order direction) n bit positions.
- . The contents of C (R7FO) are inputted into the most significant bit and the contents of the least significant bit are inputted into C (R7FO). This processing is repeated n times.
- . The contents of C (R7FO) are set in the "n"th bit from the most significant bit.
- . The contents of the "n"th bit from the least significant bit are set in C (R7FO).

(Before execution)		dn bits BrB_B_B_	C(R7F0)
(After execution)	$\begin{array}{c c} & & \\ \hline \\ \hline$		<u>B</u>

Most significant bit (MSB) Least significant bit (LSB)

When d indicates a word:

. The shift amount is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)

. One of 0 to 15 can be specified as n (constant). (Decimal)

When d indicates a double word:

. The shift amount is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)

. One of 0 to 31 can be specified as n (constant). (Decimal)

[Precautions]

. When n (rotation amount) is 0, the contents of d are not rotated. C holds the previous status.

[Name] Rotate left

La	dder format		Co	nditi	ion	code					Proce	essin	g ti	me (µ	ıs)	Remarks	
RO)L (d, n)	R7F4	R7F.	3 R 7	7F2	R7F1	R7	'FO	н-2000					H-700	/ 300	The upper values	
		DER	ERR	5	SD	v	c	;	Aver	age	Maxi	.mum	Ave	rage	Maximum	are values when d indicates a	
								t I	15.9		19	19.6 32.		32.4 40.6		word and the lower values are	
		•	•		•		Ļ		25.0		33.0		51.4		69.0	values when d indicates a	
Co	mmand format		No	of	ste	ps				H-2	002			H-702	2/302	double word.	
RO)L (d, n)	Co	nditi	ons		St	ep		Aver	age	Maxi	.ຫນຸດ	Ave	rage	Maximum		
			_			3			13.	2	16.	3	27	.0	33.8		
			_						20.	8	27.	5	42	.8	57.5		
				E	Bit				Wo	rd		Dou	ble	word			
	Usable I/O		ХҮ	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other	
d	I/O to be rotated				_				0	0	o		o	0			
n	No. of bits be rotated	to						0	0	0	0				0	The constant is specified in decimal.	

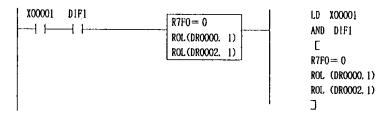
[Function]

- . The contents of d are rotated left (high-order direction) n bit positions.
- . The contents of C (R7FO) are set in the "n"th bit from the most significant bit.
- . The contents of the "n"th bit from the least significant bit are set in C (R7FO).

(Before execution)	C(R7F0) C	$-n \text{ bits } -$ $B_1B_2B_2B_3B_1B_1B_1B_2$	d			
(After execution)		-		CB ₁ B ₂ B ₉ BB		
	Most signi	lficant bit (M	SB)	∟n bits 」 Least significant	bit	(LSB)

When d indicates a word:

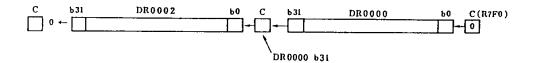
- . The shift amount is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 15 can be specified as n (constant). (Decimal)


When d indicates a double word:

- . The shift amount is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 31 can be specified as n (constant). (Decimal)

[Precautions]

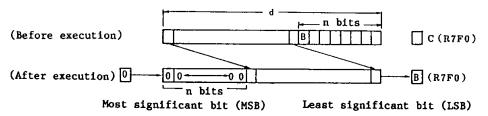
. When n (rotation amount) is 0, the contents of d are not rotated. C holds the previous status.


[Program example]

[Program explanation]

. 64-bit data is shifted bit by bit at the leading edge of X00001. 0 is inputted in the shifted empty area.

Entire movement


······		 	
		 ······································	

[Name] Logical shift right

La	adder format			Con	diti	lon	code					Proce	ssin	g ti	me (µ	s)	Remarks
LS	SR (d, n)	R7F4	R	7F3	R	7F2	R7F1	R7F	0	-	H-2	000			H-700	/ 300	The upper values
		DER	E	RR	5	SD	v	с		Aver	age	Maxi	mum	Ave	rage	Maximum	are values when d indicates a
					1			T T		14.	1	15.	3	28	.8	31.5	word and the lower values are
		•		•		•	•	• ↓		24.0		0 29.		7 49.5		62.1	values when d indicates a
Co	Command format No. of st				ste	ps	-			H-2	002			H-702	/ 302	double word.	
LS	LSR (d, n) Conditions				Step			Average Ma		Maxi	mum Averag		rage	Maximum			
			_					3			7	12.	7	7 24.0		26.2	
							5		20.0		0	24.	7	41.2		51.7	
					E	Bit	*			Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
d	I/O to be shifted									0	0	0		0	0		
n	No. of bits be shifted	to							0	o	o	0				0	The constant is specified in decimal.

[Function]

- . The contents of d are shifted right (low-order direction) n bit positions.
- . O is set in n bits from the most significant bit.
- . The contents of the "n"th bit from the least significant bit are set in C (R7F0).

When d indicates a word:

- . The shift amount is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 15 can be specified as n (constant). (Decimal)

When d indicates a double word:

- . The shift amount is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 31 can be specified as n (constant). (Decimal) .

[Precautions]

. When n (shift amount) is 0, the contents of d are not shifted. C holds the previous status.

[Name] Logical shift left

La	dder format			Con	diti	on	code					Proce	essin	ng ti	me (µ	s)	Remarks		
LS	5L (d, n)	R7F4	R	7F3	R7	F2	R7F1	R7	'F0		H-2	000			H 7 00	/ 300	The upper values are values when		
		DER	E	RR	S	D	V	с	:	Aver	age	Maxi	loum	Ave	rage	Maximum	d indicates a word and the		
				_				1		14.	1	15.	.3	28	.8	31.5	lower values are values when d		
		•		•			•			24.	0	29.	.7	49	.5	62.1	indicates a double word.		
Co	mmand format			No.	of	ste	ps				H-2	002			H-702	/ 302			
LS	5L (d, n)	С	ond	iti	ons		St	ep		Aver	age	Maxi	ສບສ	Ave	rage	Maximum			
							3			11.	7	12.	.7	24	.0	26.2			
				-						20.	0	24.	.7	41	• 2	51.7			
					E	it				Wa	ord		Dou	ble	word				
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other		
đ	I/O to be shifted									0	0	0		0	o				
n	No. of bits be shifted	to							o	o	0	0				o	The constant is specified in decimal.		

[Function]

. The contents of d are shifted right (low-order direction) n bit positions.

. O is set in n bits from the least significant bit.

. The contents of the "n"th bit from the most significant bit are set in C (R7F0).

c(R7F0) n bits	d b	
(Before execution)			
(After execution)	B	000	
		└───n bits ──⁴	
Most	significant bit (MSB)	Least significant bit	t (LSB)

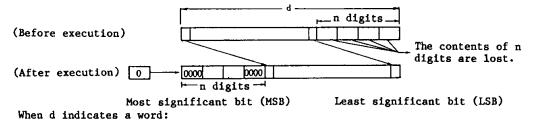
When d indicates a word:

- The shift amount is specified by the contents (0 to 15) of the low-order 4 bits (b3 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 15 can be specified as n (constant). (Decimal)

When d indicates a double word:

- . The shift amount is specified by the contents (0 to 31) of the low-order 5 bits (b4 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 31 can be specified as n (constant). (Decimal)

[Precautions]


. When n (shift amount) is 0, the contents of d are not shifted. C holds the previous status.

[Name] BCD shift right

La	dder format		(Con	diti	on	code					Proce	ssin	g ti	me (µ	s)	Remarks
BS	R (d, n)	R7F4	R	7F3	R7	'F2	R7F1	R7	'FO	H-2		2000			H -7 00	/300	The upper values
		DER	E	RR	s	D	v	С	;	Aver	age	Maxi	muna	Ave	rage	Maximum	are values when d indicates a
										8.	2	8.	7	16	• 6	17.7	word and the lower values are
		•		•			•	•	ŀ	17.1		21.	1 35.1		43.9	values when d indicates a double word.	
Co	mmand format		J	No.	of	ste	ps				H-2	002			H-702	/302	aouble wora.
BSR (d, n)		C	ond	iti	ons		St	ep		Average		Maximum		Average		Maximum	
				_			3			6.	8	7.	2	13	.8	14.7	
			-	_			5			14.2		17.	6	29.2		36.6	
					B	it				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
d	I/O to be shifted									o	o	0		o	0		
n	No. of bits be shifted	to							0	o	0	0				o	The constant is specified in decimal.

[Function]

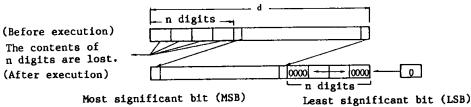
- . The contents of d are shifted right (low-order direction) n digit positions. (One digit is 4 bits long.)
- . O is set in n digits from the high-order position.
- . The contents of n digits from the low-order position are lost.

- The shift amount is specified by the contents (0 to 3) of the low-order 2 bits (bl and b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 3 can be specified as n (constant). (Decimal)

When d indicates a double word:

- . The shift amount is specified by the contents (0 to 7) of the low-order 3 bits (b2 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 7 can be specified as n (constant). (Decimal)

[Precautions]


. When n (shift amount) is 0, the contents of d are not shifted.

1

[Name]	BCD	shift	left
--------	-----	-------	------

La	dder format		(Cond	litio	on c	ode				1	Proce	s)	Remarks					
BS	L (d, n)	R7F4 R7F3 R7F2 R			R7F1 R7F0		F0		H-20	000			H–700	/ 300	The upper values are values when				
		DER	E	RR	SI	D	V	С		Aver	age	Maxi	mum	Ave	rage	Maximum	d indicates a word and the		
												8.	8.2		8.7		.6	17.7	lower values are values when d
		•		•	•		•	•	ſ	17.	1	21.	1	35	.1	43.9	indicates a double word.		
Со	mmand format		1	۰o	of	steps H-2002 H-702/302		/ 302											
BS	L (d, n)	d, n) Conditions				Step			Average		Maximum		Average		Maximum				
		_					3			6.8		7.2		13.8		14.7			
		_						14		14.2		6	29.2	36.6					
	······································	Bit								Wo	rd	Dout		uble word					
	Usable I/O		x	Y	R, L, M	MS,	,SS,WE ,TMR,C J,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other		
d	I/O to be shifted									o	0	o		0	o				
n	No. of bits be shifted	to							0	0	0	o				o	The constant is specified in decimal.		

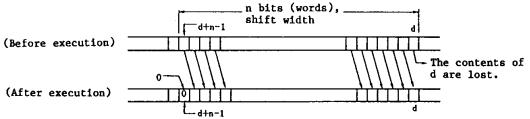
- . The contents of d are shifted left (high-order direction) n digit positions. (One digit is 4 bits long.)
- . O is set in n digits from the low-order position.
- . The contents of n digits from the high-order position are lost.

When d indicates a word:

- . The shift amount is specified by the contents (0 to 3) of the low-order 2 bits (bl and b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 3 can be specified as n (constant). (Decimal)

When d indicates a double word:

- . The shift amount is specified by the contents (0 to 7) of the low-order 3 bits (b2 to b0) of n (WX, WY, WR, WM, TC). (The high-order bits are ignored and assumed as 0.)
- . One of 0 to 7 can be specified as n (constant). (Decimal)


[Precautions]

. When n (shift amount) is 0, the contents of d are not shifted.

[Name] Batch shift	right	(Shift	right	block)
--------------------	-------	--------	-------	--------

Ladder format Condition code										F	roce	ssin	g ti	me (µ	s)	Remarks
WS	HR (d, n)	R7F4	R7	F3	R7F2	R7F1	R7F1 R7F0			11-20	00			H - 700	/ 300	The upper values are values when
		DER	ER	R	SD	v	C	;	75.	7 +	0.3	n	147	.4 +	0.6 n	d indicates a
		1			•			,	66.	0 +	3.9 (6.8	n	132	.6 +	7.5 n (10.4)	bit and the lower values are values when d indicates a uord
Co	mmand format		N	0.	of st	eps			н–2002					H-702	/ 302	word. The contents of
WS	HR (d, n)	Co	ondi	tio	ons	St	ep		63.	1 +	0.2	n	122.8 + 0.5 n			() are values when d indicates WL.
		•	-			3	3		55.0 +		3.2 (5.7	n 110.5 +		.5 +	6.2 (8.7)	
					Bit				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	L, M	D,SS,WI IS,TMR,C CU,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d	Top I/O to b shifted	e			0					0						
n	No. of bits (words) to b shifted	e						o	o	0	0				o	The constant is specified in decimal.

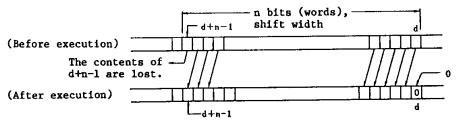
- . n bits (words) from d to d+n-1 are shifted right (in the I/O number decreasing direction) one bit position.
- . O (HOOOO) is set in the bit (word) of d+n-1.
- . The contents of d are lost.

When n is one of WX, WY, WR, WL, WM, and TC:

The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of bits (words) to be shifted.

When n is a constant:

One of 0 to 255 can be specified as the number of bits (words) to be shifted. (Decimal)


- Keep d+n-1 within the I/O limits (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). When d+n-1 is beyond the limits, DER = 1 and the contents between d and the maximum limit are shifted.
- . When n is 0, no batch shift is performed. DER (R7F4) is 0.

	//···	

[Name]	Batch	shift	left	(Shift	left	block)
--------	-------	-------	------	--------	------	--------

Ladder format			Con	diti	on	code				F	roce	ssin	g ti	me (µ	s)	Remarks
WSHL (d, n)	R7F4	R	7F3	R7	F2	R7F1	R7F1 R7F0		H-2000 H-700/300							The upper values are values when
	DER	E	RR	s	D	v	С	;	75.	7 +	0.3	n n	147	.4 +	0.6 n	d indicates a bit and the
	ţ.		•			•			$ \begin{array}{r} 3.9 \\ 66.4 + n \\ (6.8) \end{array} $			133	.7 +	7.5 n (10.4)	lower values are values when d indicates a word.	
Command format			No.	of	ste	ps			H-2002					H-702	/ 302	The contents of
WSHL (d, n)	С	Conditions St							63.	1 + 0.2 n			122.8 + 0.5 n			() are values when d indicates WL.
	-				3			55.	3.2 3 + n (5.7)		$ \begin{array}{r} 6.2 \\ 111.4 + & n \\ (8.7) \end{array} $		n			
_	1			B	it				Wo	rd		Dou	ıble	word	· · · · · · · ·	1
Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d Top I/O to b shifted)e			0						0						
n No. of bits (words) to b shifted	æ							0	o	o	0				O	The constant is specified in decimal.

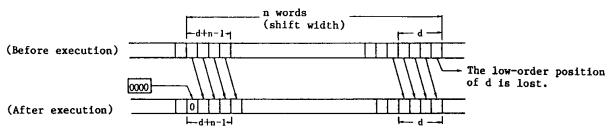
- . n bits (words) from d to d+n-1 are shifted left (in the I/O number increasing direction) one bit position.
- . O (HOOOO) is set in the bit (word) of d.
- . The contents of d+n-l are lost.

When n is one of WX, WY, WR, WL, and WM:

The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of bits (words) to be shifted.

When n is a constant:

One of 0 to 255 can be specified as the number of bits (words) to be shifted. (Decimal)


- . Keep d+n-1 within the I/O limits (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). When d+n-1 is beyond the limits, DER = 1 and the contents between d and the maximum limit are shifted.
- . When n is 0, no batch shift is performed. DER (R7F4) is 0.

 	 	 _
 	 	 _
		-

[Name]	Batch	BCD	shift	right	(BCD	shift	right	block)	
--------	-------	-----	-------	-------	------	-------	-------	--------	--

La	dder format		1	Con	diti	on	code			Processing time (µs)							Remarks			
WB:	SR (d, n)	R7F4	R	7F3	R7	F2	R7F1	R7F1 R7F0			H-20	00			н-700	/300	The contents of () are values			
		DER	E	RR	s	D	v	с								12.2	when d indicates			
		ţ		•			•			64.	5 +	6.7 (9.6	n	130.4 +		13.3 (16.2) ⁿ	WL.			
Co	mmand format			No.	of	ste	ps	I			H-20	02			H-702	/302				
WBSR (d, n) Condit			iti	ons		St	ep				5.6				11.1					
				_			3			53.	7 +		n	107		(13.5)				
		·	<u> </u>		B	it	1		1	Wo	rd		Dou	ıble	word					
Usable I/O			x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other			
d	Top I/O to b shifted	e									0									
n	No. of words be shifted	to							0	o	0	0				o	The constant is specified in decimal.			

- n words from d to d+n-1 are shifted right (in the I/O number decreasing direction) one digit position as BCD data 4n digits long. (One digit is 4 bits long.)
- . 0 is set in the high-order position of d+n-1.
- . The low-order position of d is lost.

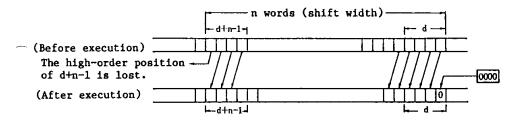
When n is one of WX, WY, WR, WL, and WM:

The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of words to be shifted.

When n is a constant:

One of 0 to 255 can be specified as the number of words to be shifted. (Decimal)

- . Keep d+n-1 within the I/O limits (WRC3FF, WL3FF, WL3FF, WM3FF). When d+n-1 is beyond the limits, DER = 1 and the contents between d and the maximum limit are shifted.
- . When n is 0, no batch shift is performed. DER (R7F4) is 0.


······································	·		
		······································	

[Name]	Batch	BCD	shift	left	(BCD	shift	left	block)	
--------	-------	-----	-------	------	------	-------	------	--------	--

La	dder format		C	Cond	litio	n code				P	roce	ssin	g ti	me (µ	s)	Remarks
WB	SL (d, n)	R7F4	R	7F3	R7F	2 R7F1	R 71	FO		H-20	000			11-700	/300	The contents of () are values
		DER	EF	R	SD	v	С				6.7	,			13.3	when d indicates
		1		•		•			64.	5 +		n	130	.4 +	13.3 n (16.2)	жд.
Co	mmand format		1	۱o.	ofs	fsteps				H-20	02			H-702	/302	
WB	SL (d, n)	C	Conditions Step					5.6					11.1			
			-	-		3	3		53.	7 +		n	108		(13.5)	
		•[Bi	t.		i	Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	L,	TD,SS,WI MS,TMR,C RCU,CT		wx	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d	Top I/O to b shifted	e								ο						
n	No. of words be shifted	to				<u> </u>		0	o	0	0				0	The constant is specified in decimal.

[Function]

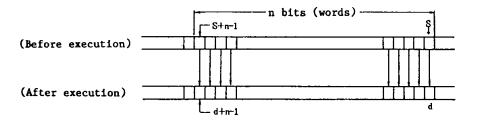
- . n words from d to d+n-l are shifted left (in the I/O number increasing direction) one digit position as BCD data 4n digits long. (One digit is 4 bits long.)
- . O is set in the low-order position of d+n-1.
- . The high-order position of d+n-l is lost.

When n is one of WX, WY, WR, WL, and WM:

The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of words to be shifted.

When n is a constant:

One of 0 to 255 can be specified as the number of words to be shifted. (Decimal)


- . Keep d+n-1 within the I/O limits (WRC3FF, WL3FF, WL3FF, WM3FF). When d+n-1 is beyond the limits, DER = 1 and the contents between d and the maximum limit are shifted.
- . When n is 0, no batch shift is performed. DER (R7F4) is 0.

[Name] Block transfer (Move)

Ladder format		C	Cond	ition	code				I	roce	essin	ıg ti	me (µ	s)	Remarks
MOV (d, S, n)	R7F4	R	7F3	R7F2	R7F1	R7F	0		H-20	00			H-700	/ 300	The contents of
	DER	EF	RR	SD	v	С				3.9	1			7.5	() are values when d and S indicate L and
	1].	•	•	•	•		139.	5 +		n	276		(10.4)	WL.
Command format		N	۱o.	0. of steps H-2002 H-702/302				/ 302							
MOV (d, S, n)	C	ondi	itions Step 3.2 6.2		6.2										
		_	-		4	ţ		116.	2 +		n	230	.2 +	(8.7)	
				Bit	d			Wo	rd		Dou	ıble	word		
Usable I/O		x	Y	L, M9),SS,WE S,TMR,C CU,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d Top I/O of transfer destination		-		0					0						
S Top I/O of transfer sou	irce			0					0						
n Number of bi (words) to b transferred							0	0	0	0	-			o	The constant is specified in decimal.

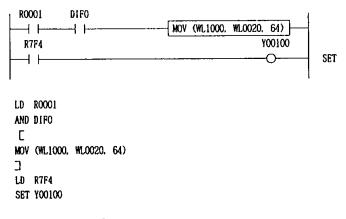
[Function]

- . n bits (words) from S to S+n-1 are transferred to d+n-1.
- . The values from S to S+n-1 are held. When the range of the transfer source is overlapped with that of the transfer destination, the transferred value is selected.

When n is one of WX, WY, WR, WL, and WM:

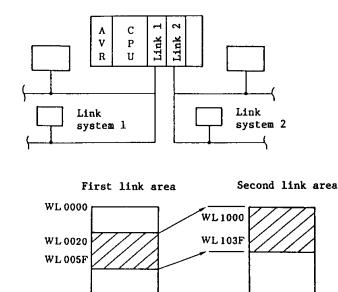
The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of bits (words) to be transferred.

When n is a constant:


One of 0 to 255 can be specified as the number of bits (words) to be transferred. (Decimal)

[Precautions]

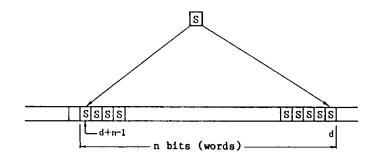
- . Keep d+n-1 and S+n-1 within the I/O limits (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). When d+n-1 and S+n-1 are beyond the limits, DER = 1 and the contents between d and the maximum limit are transferred.
- . When n is 0, no batch transfer is performed. DER (R7F4) is 0.


[Program example]

Data in the first link area (WL0020 to WL005F) is transferred to the second link area (WL1000 to WL103F).

[Program explanation]

64-word data is transferred from link system 1 of the first link to link system 2 of the second link. The transfer areas are WLOO20 to WLOO5F and WL1000 to WL103F.



[Name] Copy

Ladder format			Cond	litio	n c	code		Ì		F	roce	ssin	g ti	œe (μ	s)	Remarks
COPY (d, S, n)	R7F4	R	7F3	R7F	2	R7F1	R7	'FO		H-20	00			H-700	/ 300	The upper values
	DER	E	RR	SD		v	С	:	60.	1 +	0.3	n	118	.0 +	0.6 n	are values when d indicates a
	1		•			•		i	68.	8 +	2.6 (3.9	n	136	.6 +	5.0 (6.3) ⁿ	bit and the lower values are values when d indicates a word.
Command format		1	No.	ofs	teŗ	os				H-20	02			H -70 2	/ 302	The contents of () are values
COPY (d, S, n)	C	ond	itic	ons		St	ep		50.	1 +	0.2	n	98	.3 +	0.5 n	when d and S
			-			4			57.	3 +	2.2 (3.2	n	113	.8 +	4.2 n (5.2)	indicate L and WL.
				Bi	t	L			Wo	rd		Dou	ble	word		
Usable I/O		x	Y	L,	MS,	,SS,WD ,TMR,C J,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d Top I/O of destination	20ру			0						0						
S I/O of copy source		0	0	0				0	o	o	0				0	
n Number of b (words) to copied	1							0	o	o	o				o	The constant is specified in decimal.

[Function]

- . The value of S (bit, word) is copied from d to d+n-1.
- . The value of S is held.
- . Bits are copied in bits and words are copied in words.

When n is one of WX, WY, WR, WL, and WM:

The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of bits (words) to be copied.

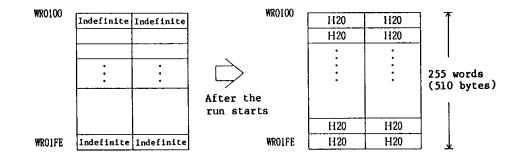
When n is a constant:

One of 0 to 255 can be specified as the number of bits (words) to be copied. (Decimal)

[Precautions]

- . Keep d+n-1 within the I/O limits (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). When d+n-1 is beyond the limits, DER = 1 and the contents between d and the maximum limit are copied.
- . When n is 0, no batch copy is performed. DER (R7F4) is 0.

[Program example]

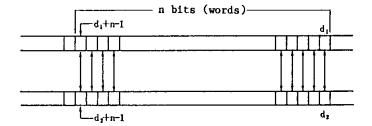

The default value (H2020) is set in the range from WR0100 to WR01FE.

[Program explanation]

The communication data area from WR0100 to WR01FE is filled with the space code (H2O) as a default value at the first scan after the run starts.

R7E3: 1 scan ON after the run starts

сорү


··	 	

[Name]	Block	exchange	(Exchange)
--------	-------	----------	------------

Ladder format			Cond	litio	on (code				F	roce	ssin	g ti	me (µ	s)	Remarks
XCG	R7F4	R	۲F3	R 71	F2	R7F1	R7F	70		H-20	000			H-700	/ 300	The upper values
(d ₁ , d ₂ , n)	DER	E	ERR	SI	D	V	С		-	8 + •0 +					10.6 n 16.2 n)	are values when d ₁ and d ₂ indicate a bit
			•			•	•		138.	0 +	6.3 [12.1		273	-	11.7 n (17.5)	and the lower values are values when d ₁
Command format	:		No.	of	ste	ps				H-20	02			H-702	/ 302	and d ₂ indicate a word.
XCG (d ₁ , d ₂ , n)	с	ond	liti	ons		St	ep			8 + .3 +					8.8 n 13.5 n)	The contents of () are values when d_1 and
			-			4	•		115.	-	5.2 (10.1		228		9.7 n (14.6)	d ₂ indicate L and WL.
		Bit				Wa	rd		Dou	ble	word					
Usable I/C)	x	Y	R, L, M	MS	D,SS,WDT, S,TMR,CU, CU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d ₁ Top I/O of exchange destinatio				0						o						
d ₂ I/0 of exchange a	source			0						0						
n Number of (words) to exchanged								0	0	0	0				0	The constant is specified in decimal.

[Function]

- . The contents of n bits (words) from d1 to d_1+n-1 are exchanged with the contents of n bits (words) from d_2 to d_2+n-1 .
- . Bits are exchanged with bits and words are exchanged with words.

When n is one of WX, WY, WR, WL, and WM:

The contents (0 to 255) of the low-order 8 bits (b7 to b0) of n are the number of bits (words) to be exchanged.

When n is a constant:

One of 0 to 255 can be specified as the number of bits (words) to be exchanged. (Decimal) 10

Example:

X00001	DIF1					
<u> </u>		[XCG	(WL0000,	WL1000, 255)	
		-				- 1

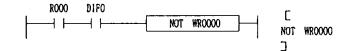
WL0000 to WL00FE are exchanged with WL1000 to WL10FE.

- . Keep d+n-1 and S+n-1 within the I/O limits (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). When d+n-1 and S+n-1 are beyond the limits, DER = 1 and the contents up to the maximum limits of the numbers of bits (words) specified as d_1 and d_2 whichever smaller are exchanged.
- . When n (block width) is 0, no batch exchange is performed. DER (R7F4) is 0.

[Name] Inversion (NOT)

Lac	lder format			Con	diti	on	code					Proce	ssin	g ti	me (µ	s)	Remarks
NOT	ſ (d)	K7F4	R	7F3	R7	F2 R7F1 R7F0)		H-2	000			H -7 00	/300	The upper values
		DER	E	RR	S	D	v	С	,	Aver	age	Maxi		Ave	rage	Maximum	are values when d indicates a
			-							4.	4	+		8	.6		bit or word and the lower values
		•		•			•	•		6.	3	+		11	.7		are values when d indicates a double word.
Cot	nmand format			No.	of	ste	ps				H-2	002			H-702	/ 302	doubte word.
NOT	Г (d)	C	ond	iti	ons		St	ep		Aver	age	Maxi	.mum	Ave	rage	Maximum	
				_			2			3.	7	•		7	.2		
							2			5.	2	Ţ		9	.7	*	
					B	it				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		x	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d	I/O to be inverted			0	o				_	0	o			0	0		

[Function]


. The bits of the contents of d are inverted.

```
Before execution
```

d ----- d

After execution

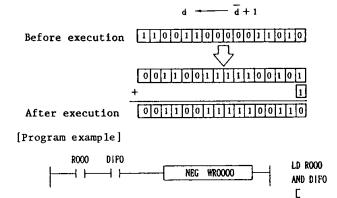
[Program example]

[Program explanation]

The contents of WR0000 are inverted at the leading edge of R000.

Example: When the instruction is executed when WR0000 is H1234, WR0000 = HEDCB. When the instruction is executed once again, WR0000 = H1234.

[Precautions]


 	••••••••••••••••••••••••••••••••	

[Name] Twos complement (Negate)

La	dder format			Cond	liti	on	code					Proce	ssin	ıg ti	me (µ	s)	Remarks
NE	G (d)	R7F4	R	7F3	R7	F2	R7F1	R 71	FO		H-2	000			H - 700	/ 300	The upper values are values when
		DER	E	RR	S	D	v	с		Aver	age	Maxi	สมเต	Ave	rage	Maximum	d indicates a
			-							4.	9			9	.7	4	bit or word and the lower values are values when
		•		•			•	•		7.	3	+		17	.2	*	d indicates a double word.
Со	mmand format			No.	of	ste	ps				H-2	002			H-702	/ 302	
NE	G (d)	C	ond	itio	ons		St	ер		Aver	age	Maxi	.ສບສ	Ave	rage	Maximum	
							2			4.	1			8	.1	+	
				-				•		6.	1			14	.3		
	<u></u>	·			В	it	•			Wo	rd		Dou	ıble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
đ	I/O to be complemented			0	0					0	0			0	o		

[Function]

. The twos complement of d is calculated. (The bits of the contents of d are inverted and added with 1. C (R7FO) is not changed.

[Program'explanation]

. The twos complement of the contents of WR0000 is obtained at the leading edge of R000.

NEG WROOOO

Example: When the instruction is executed when WR0000 is H1234, WR0000 = HEDCC. When the instruction is executed once again, WR0000 = H1234.

[Precautions]

[Name] Absolute value (Absolute)

Ladder format		Condition code 7F4 R7F3 R7F2 R7F1 R7							1	Proce	ssin	g ti	me (µ	s)	Remarks
ABS (d, S)	R7F4	R	7F3	R7F	2 R7F1	. R71	FO		H-20	000			H - 700	/300	The upper values are values when
	DER	E	RR	SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	d indicates a bit or word and
		1				t t		7.	5	*		14	.6	+	the lower values are values when
			•			+		12.	5	*		25	.5		d indicates a double word.
Command format	-	•	No.	of s	teps				11-20	002			H -702	/ 302	
ABS (d, S)	С	ond	itio	ons		Step		Aver	age	Maxi	mum	Ave	rage	Maximum	
	Wo	Word				3			2	+		12	.2	+	
	Do	ub1	e wo	ord		4			4			21.2			
				Bi	t			Wo	rd		Dou	ıble	word		
Usable I/O)	x	Y	L,	TD,SS, MS,TMR RCU,CT	DT, CU,	WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d I/O after a lute value								0	0			0	0		
S I/O before abso- lute value taken					0	0	0	0	0	0	0	o			

[Function]

- . When S is positive or 0: The contents of S are set in d. C (R7F0) is 0.
- . When S is negative: The twos complement of the contents of S is set in d. C (R7FO) is 1.
- . Use words or double words for d and S.

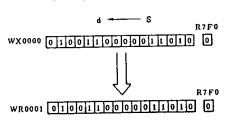
Example:

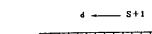
(When the value of WX is negative) (When the value of WX is positive or O WX0000 = H4C1AWX0000 = HCC1A(When R7FO is 7) (When R7F0 is 0) _ <u>s</u>+1 s d -R7F0 R7F0 WX 0000 1100110000011010 WX0000 1100110000011010 1 ትኑ 00011000111110001001 WR0000 1100110000011010 0 WR0000 0011001111100110 1 When S indicates a word: 0 to 65 535 (decimal), H0000 to HFFFF (hexadecimal)

When S indicates a double word: 0 to 4 294 967 295 (decimal), H00000000 to HFFFFFFFF (hexadecimal)

[Precautions]

[Name] Sign addition (Sign get)


Lad	der format		(Cond	litic	on c	code					Proce	ssin	g ti	me (µ	s)	Remarks
SGE	T (d, S)	R7F4	R	7F3	R 71	2	R7F1	K7	FO		H-2	000			H-700	/ 300	The upper values are values when
		DER	E	RR	SI	,	V	С		Aver	age	Maxi	กนต	Ave	rage	Maximum	d and S indicate words and the
			-	_	1					6.	7			13	.3		lower values are values when d
		•		•			•	•		12.	1	*-		24	.1	+	and S indicate double words.
Cou	mand format			No.	ofe	ster	ps	•			H-2	002			H-702	/ 302	
SGE	ET (d, S)	C	ond	iti	ons		St	ер		Aver	age	Maxi	mum	Ave	rage	Maximum	
		Wo	rd				3	3		5.	6	•		11	.1	- +	
		Do	ubl	e w	ord		1	ł		10.	1			20	.1		l
-					B	lt				Wa	rd		Dou	ıble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WI ,TMR,(U,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
d	I/O after si addition	.gn								0	0			0	0		
S	I/O before a addition	sign							o	0	0	0	0	0	o	o	


[Function]

- . When C (R7FO) is 0: The contents of S are set in d.
- . When C (R7F0) is 1: The twos complement of the contents of S is set in d.
- . The contents of C (R7F0) are not changed.
- . Use words or double words for d and S.

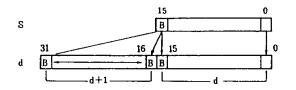
Example:

When C (R7F0) is 0

When C (R7F0) is 1

R7F0

[Precautions]



[Name] Sign extension

Ladder format	1	Cor	diti	on	code				Proce	essin	ıg ti	me (µ	is)	Remarks
EXT (d, S)	R7F4	R7F	3 R7	7F2	R7F1	R 7 F 0		H-2	000			H- 700	0/300	· · · · · · · · · · · · · · · · · · ·
	DER	ERR	s	SD	v	С	Ave	rage	Maxi	การ	Ave	rage	Maximum	
	•	•	•			•		8.8	*		17	.2	4	
Command format		No.	of	ste	ļ ps			H-2	002			H -70 2	2/302	
EXT (d, S)	Co	nditi	.ons		St	ep	Ave	erage	Maxi	.mum	Ave	rage	Maximum	
		-			3			7.3	4	-	14	.3	*	
			E	Bit	<u>t</u>		 	lord	<u>_</u>	Dou	l ible	word		
Usable I/O	1	х у	R, L, M	MS	,SS,WD ,TMR,C U,CT		(w	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
d I/O after s extension	ign										0	o		
S I/O before extension	sign					0	0	0	o				0	

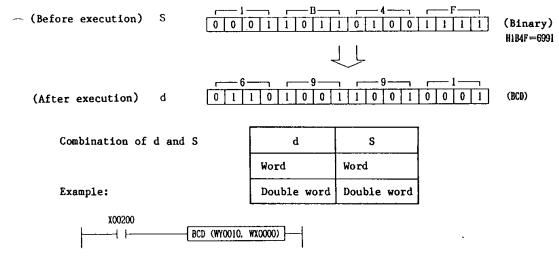
[Function]

- . The sign bit (most significant bit) of S is extended to a high-order word of d.
- . The low-order word of d is the contents of S.

[Program example]

[Program explanation]

- . When X00000 is turned ON, the contents of WX0000 are extended to DR0100. When WX00000 is positive or 0 When WX00000 is negative
 - Example: WX00000 = H7FFF (+32 767) Example: WX00000 = H8000 (-32 768) DR0100 = H00007FFF (+32 767) DR0100 = HFFFF8000 (-32 768)


Ladder form	at		Con	diti	on	code					Proce	essir	ng ti	me (µ	s)	Remarks
BCD (d, S)	R7F4	F	R7F3	R7	F2	R7F1	R7F0)	• • • • • •	H-2	000			H - 70 0	/ 300	The upper values
	DER	1	ERR	s	D	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	are values when d and S indicate
	t				• - <u></u>			Ţ	31	.9	33	3.4	6	5.5	68.8	words and the lower values are values when d
	1		•			•	•		93	.2	117	7.4	19	7.8	251.1	and S indicate double words.
Command for	mat		No.	of	ste	ps				H-2	002			H -702	/ 302	double words.
BCD (d, S)	(Conc	iiti	ons		St	ep		Aver	age	Maxi	.ແບສ	Ave	rage	Maximum	
	Wo	ord				3			26	.6	27	7.8	5	4.6	57.3	
	Do	oubl	le w	ord		4			77	.7	97	7.8	16	4.8	209.2	
				B	it				Wo	rd		Dou	ıble	word		
Usable	1/0	x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		iх	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
d I/O (BCD conversi									0	0			0	o		
S I/O (BIN) before conversion				c)	0	0	0	0	0	o	o				

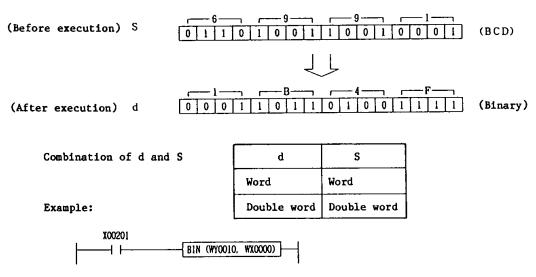
[Name] Binary -> BCD conversion (BCD)

[Function]

- . The contents of S are converted from a binary number to a BCD number and the result is outputted to d.
- When the conversion result of S is larger than the number of digits of the BCD data of d, DER (R7F4) is 1 and no conversion is executed.

When S is a word: Set it as follows: $H0000 \le S \le H270F$ (0 to 9999) When S is a double word: Set it as follows: $H00000000 \le S \le H05F5E0FF$ (0 to 9999999)

[Precautions]


. When a data error occurs, the contents of d are left unchanged.

[Name] H	BCD ->	Binary	conversion	(Binary)
----------	--------	--------	------------	----------

Ladder format		Condition code 7F4 R7F3 R7F2 R7F1 R7								i	Proce	ssin	g ti	me (µ	s)	Remarks
BIN (d, S)	R7F4	R	7F3	R7E	72	R7F1	R71	FO		H-2	000			H-700	/ 300	The upper values are values when
	DER	E	RR	SI	>	V	С		Aver	age	Maxi	อนอ	Ave	rage	Maximum	d and S indicate words and the
	t					-	_		34	.2	34	.2	7	0.2	70.2	lower values are values when d
	ł		•			•	•		78	.5	89	.5	16	3.7	187.9	and S indicate double words.
Command format			No.	of a	step	8				H-2	002		H-702/302			
BIN (d, S)	С	ond	iti	ons		St	ep		Aver	age	Maxi	mum	Ave	rage	Maximum	
Word					3			3		.5	28	.5	58.5		58.5	
	Do	ub1	e w	ord	-	4			74	.6	65	.4	15	6.6	136.4	
· · · · · · · · · · · · · · · · · · ·	T			Bi	Lt			I	Wo	rd		Dou	ıble	word		
Usable I/O		x	Y	R, L, M	MS,	,SS,WD ,TMR,C J,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d I/O (BCD) a conversion	fter								0	0			0	0		
S I/O (BIN) before conversion					0	o	o	0	o	0	0	o				

[Function]

- . The contents of S are converted from a BCD number to a binary number and the result is outputted to d.
- . When the contents of S are not BCD data (when A to F are found in the data), DER (R7F4) is 1 and no conversion is executed. (d is left unchanged.)

[Precautions]

. When a data error occurs, the contents of d are left unchanged.

[Name] Decode

La	dder format			Cond	litio	n e	code				1	Proce	ssin	g ti	me (µ	s)	Remarks
DE	CO (d, S, n)	R7F4	R	7F3	R7F	2	R7F1	R7	FO		H-2	000			H-700	/300	
		DER	E	ERR	SD		V	C		Aver	age	Maxi	ասա	Ave	rage	Maximum	
		ţ		•			•			59	.9 +	0.3	n	11	5.3 +	0.6 n	
Со	mmand format		1_	No.	of s	te	ps	1			H-2	002			H-702	/ 302	
DE	CO (d, S, n)	C	ond	litio	ons		St	ep		Aver	age	Mari	. 11 เม	Ave	rage	Maximum	
				-			4	ł		49	.9 +	0.2	n	9	6.1 +	0.5 n	
		1			Bi	t				Wa	rd		Dou	ible	word		
	Usable I/O		x	Y	L,	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d	Top I/O of decoding destination				0												
S	Word I/O to decoded	be							0	0	0	0				o	
n	No. of bits be decoded	to														0	1 to 8 (decimal)

[Function]

. The low-order n bits of S are decoded to 2^n and 1 is outputted to the decoded bits of the bit string from d to d+2n-1. (n: 1 to 8)

. When n is 0, no data is decoded. The contents from d to $d+2^{n}-1$ are left unchanged.

b15 b7 b0
$$d+2^{*}-1$$
 $d+8$ d
S ______ \Rightarrow ____ 0 ____ 1 ___ 0 ____ 0 ____ 2^{*}

[Program example]

[Program explanation]

When R100 is set from 0 to 1, a bit, that is appointed with the value of low-order 4 bits of WX0000 from top address R000, is set to 1.

Example: When WX0000 = HFFFF, 1 is set in the 15th bit, that is, ROOF from ROOO in this program.

- . Keep $d+2^{n}-1$ within the I/O limits (R7FF, L03FFF, L13FFF, M3FFF). When $d+2^{n}-1$ is beyond the limits, DER = 1 and no data is decoded.
- . The value of n should be one of 1 to 8.

[Name] Encode

Ladder format		C	ondi	tion	code					Proce	essin	ng ti	.me (µ	s)	Remarks
ENCO (d, S, n)	R7F4	R 71	73	R7F2	R7F1	R7	FO		H-2	000			H -7 00	/300	
	DER	ERI	2	SD	v	С		Aver	age	Maxi	imum	Ave	rage	Maximum	
	ţ			•	•	1		76	o.5 +	0.4	n	15	i9.0 +	0.8 n	
Command format		No	 >• 0	of ste	ps	I			H-2	002			H-702	/302	
ENCO (d, S, n)	Co	ondit	ion	IS	St	ер		Aver	age	Maxi	mum	Ave	rage	Maximum	
		-			4	ł		63	1. 7 +	0.3	n	13	2.5 +	0.7 n	
	· [Bit	l		1	Wo	ord		Dou	ıble	word		
Usable I/O		x		, MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d Top I/O of encoding destination								o	0						
S Top I/O of b string to be encoded			0		•		·								
n No. of bits be encoded	to													0	l to 8 (decimal)

[Function]

- . The value of bit position, that is set to 1 and within 2^n bits from S to S+2ⁿ-1, is encoded and set in d.
- . When n is 0, no data is encoded. The contents of d are left unchanged.
- . When a plurality of ones are found between S and S+2ⁿ⁻¹, the high-order bit is encoded.

S+2"-1	S+8	S	b15	b8b7	Ю
0	1	0 0	d		
	ž•			n bits	(1 to 8)

[Program example]

x00001	DIF1		LD X00001	
	-I ENCO	(WX0000, R000, 4)	AND DIF1	
		(WA0000, K000, 4)	Ľ	
			ENCO (WROOOO, ROOO,	4)
1		1	כ	

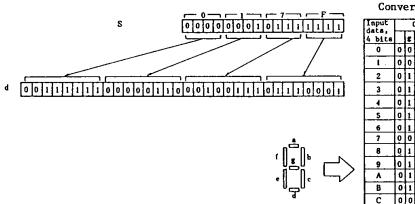
[Program explanation]

. The most significant bit where 1 is set is detected from the bit string between R000 and R0000F (24-1=15 bits) at the leading edge of X00001 and a binary number 4 bits in length is set in the word I/0 of d.

Example: When 1 is set in the 7th and 6th bits of ROOC to ROOF, HOOO7 is set in WROOOO.

[Precautions]

- . Keep S+2ⁿ-1 within the I/O limits (R7FF, L03FFF, L13FFF, M3FFF). When S+2ⁿ-1 is beyond the limits, DER = 1 and no data is encoded.
- . The value of n should be one of 1 to 8.

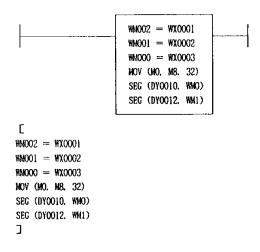

.

[Name] 7-segment decode (Segment)

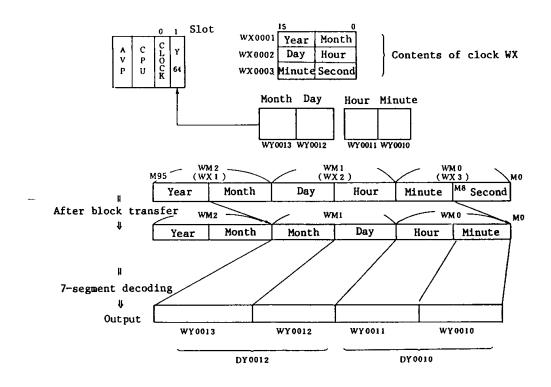

La	dder format		Co	nditi	.on	code	·				Proce	ssin	g ti	me (µ	s)	Remarks
SE	G (d, S)	R7F4	R7F	3 R 7	'F2	R7F1	R7	FO		H-2	000			H - 700	/300	
		DER	ERR	s	D	v	С		Aver	age	Maxi	ສບໝ	Ave	rage	Maximum	
		•	•		1	•			19.	1	+	-	37	.9	4	
Co	Command format SEG (d, S)		No	. of	ste	ps	1			H-2	002			H -70 2	/302	
SE	SEG (d, S)		ondit	lons		St	ep		Aver	age	Maxi	ອບອ	Ave	rage	Maximum	
			-			3			15.	9	+		31	• 6	+	
				E	Bit	1		ا ا	Wo	rd		Dou	ıble	word		
	Usable I/O		x y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d	I/O of decod destination	ing											0	0		
S	Decoding contents							0	0	o	0				0	

[Function]

. The contents of S are converted to a 4-digit 7-segment display code on the assumption that one digit is 4 bits in length and the result is outputted to d.



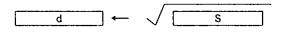
Conversion table


[Program example]

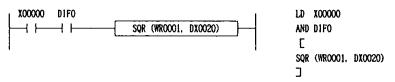
Data (WX0001 to WX0003) of the clock module is outputted to the 7-segment display unit of DY0010 and DY0012 (64-point output).

[Program explanation]

The month, day, hour, and minute, which are read from the clock module, are outputted to a 8-digit 7-segment display unit.



[Name] Square root


Ladder forma	it		Co	ndi	tion	code]	Proce	ssin	g ti	me (µ	s)	Remarks
SQR (d, S)	R 71	F4	R7E	3	R7F2	R7F1	R7	'FO		H-2	000			H - 700	/300	n y − y − y − y − y − y − y − y − y − y
	DEF	۲	ERR		SD	v	с	:	Aver	age	Maxi	מטמ	Ave	rage	Maximum	
		ļ	•	i	•	•			409	.3	421	8	88	2.6	855.1	
Command form	at	I	No		of ste	eps	I			H-2	002			H -70 2	/302	
SQR (d, S)		Cor	ndit	ior	1S	St	ep		Aver	age	Maxi	מטמ	Ave	rage	Maximum	
			-			4	ŀ		341	.1	351	• 5	73	5.5	712.6	
					Bit				Wo	rd		Dou	ıble	word	L	
Usable 1	1/0	,	x y		, MS),SS,WE S,TMR,C CU,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d Square ro (BCD)	oot								o	0						
S I/O (BCD) square ro be calcul	oot to									_		0	o	o	0	

[Function]

- . The square root of the contents of S is calculated and the result is outputted to d.
- . Set BCD data in S. When the BCD data of S is faulty, DER (R7F4) is 1 and no operation is performed. (There is data other than H0 to H9.)
- . The figures below the decimal point are omitted.

[Program example]

[Program explanation]

. The square root of the value of DX0020 is calculated at the leading edge of X00000 and the result is substituted in WR0001.

Example: The following is obtained by operation when DX0020 = H00002159 (BCD). WR0001 = H0046 (BCD) (2159 = 46.465 ...)

[Name] Bit count

La	dder format			Cond	litio	n (code				1	Proce	ssin	g ti	me (µ	s)	Remarks
BC	U (d, S)	R7F4	R	7F3	R7F	2	R7F1	R 7 E	FO	_ . ,	H-2	000			H-700	/300	The upper values are values when
		DER	E	RR	SD		V	С		Aver	age	Maxi	mum	Ave	rage	Maximum	d indicates a word and the
										47	.9	55	.9	10	4.3	121.9	lower values are values when d
		•		•	•		•	•	ľ	90	.7	106	.7	19	8.1	233.3	indicates a double word.
Co	mmand format			No.	of s	ter	26				H-2	002			H-702	/ 302	double word.
BC	U (d, S)	С	ond	itic	ons		St	ер		Aver	age	Maxi	.กินท	Ave	rage	Maximum	
		Wo	rd				3		-	39	.9	46	.6	8	6.9	101.6	
		Do	ubl	e wo	ord		4			75	.6	88	3.9	19	4.4	165.1	
					Bi	t				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	L,	MS,	,SS,WD ,TMR,C J,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d	No. of bits	of 1								0	0						
S	I/O for coun bits of 1	ting					•		0	o	0	0	o	o	o	0	

[Function]

. The number of bits of the contents (16 bits for word or 32 bits for double word) of S where 1 is set is outputted to d.

$$d \underbrace{15}_{0 \sim 32} \underbrace{6}_{0 \sim 32} \underbrace{15}_{0 \sim 32} \underbrace{1$$

[Program example]

[Program explanation]

. The number of bits where 1 is set is counted from the data inputted in DX0020 at the leading edge of X00002 and the result is set in WR0000.

Example: The number of bits where 1 is set is 16 (decimal) when 1010011100010101001111110001010101011 DX0020 =

Therefore, the result is WR0000 = H0010.

[Name] Exchange (Swap)

Ladder format		Co	ndit	ion	code					Proce	essin	g ti	me (µ	s)	Remarks
SWAP (d)	R7F4	R7F	3 R	7F2	R7F1	R7F	0		H-2	000			H - 700	/300	
	DER	ERR		SD	v	С		Aver	age	Maxi	Laun	Ave	rage	Maximum	
	•			•	•	•		6.	.7		 F	13	.3	+	
Command format		No	• of	ste	ps	-			H-2	002	i		H - 7 02	/ 302	
SWAP (d)	Co	ondit	ions		St	ер		Aver	age	Maxi	louo	Ave	rage	Maximum	
		-			2	!		5.	6		f-	11	•1	+	
			1	Bit	J			Wo	ord		Dou	i ble v	word	1	
Usable I/O		х ч	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d I/O to be exchanged								ó	o						

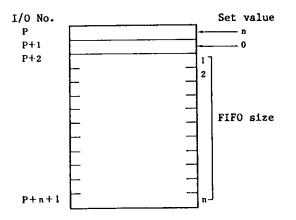
[Function]

. The high-order 8 bits of the contents of d are exchanged with the low-order 8 bits.

(Before execution)	d	
(After execution)	đ	

[Precautions]

·	· · · · · · · · · · · · · · · · · · ·	 	
			:


[Name] FIFC	initial	(FIFO	initialize)
-------------	---------	-------	-------------

Ladder format		C	ond	itio	n code]	Proce	ssin	g ti	me (µ	s)	Remarks
FIFIT (P, n)	R7F4	R7	'F3	R7F	2 R7F1	R7	FO		H-2	000			11-700	/300	
	DER	ER	R	SD	V	c		Avera	age	Maxi	สนท	Ave	rage	Maximum	
	\$			•	•			47	.8	66	.7	9	5.8	134.5	
Command format		IN	10.	of s	teps				H-2	002			H-702	/ 302	
FIFIT (P, n)	Co	ondi	tio	ns	s	tep		Aver	age	Maxi	mum	Ave	verage Maximum		
		-	•	<u> </u>		3		39	.8	55	.6	7	9.8	112.1	
<u> </u>	L	·· ·.		Bi	l t			Wo	rd I		Dou	ble	word	I	
Usable I/O	Ī	x	Y	L,	TD,SS,W MS,TMR, RCU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
P FIFO top 1/0	· · · ·								0						,
n FIFO size														0	
-		1							[0 to 256

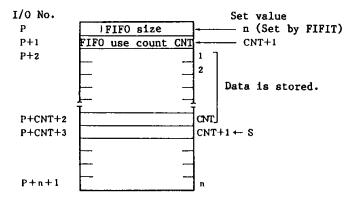
[Function]

FIFO is an abbreviation for first-in first-out. Data is stored in the buffer and fetched in the order of entry. This instruction initializes FIFO.

- . The FIFO top I/O number P and the FIFO size n are set. When $0 \le n \le 256$, n is set in P. When $257 \le n$, 256 is set in P.
- . The initial value 0 is set in P+1 as a use count of FIFO.
- . n+2 words from P to P+n+1 are used for FIFO.

- . When P+n+1 is beyond the I/O limits (WRC3FF, WL03FF, WL13FF, WM3FF), DER (R7F4) is 1 and the maximum value (last) of the range (P+1) is set in P.
- . Set n to one of 0 to 256. When n > 256, DER = 1 and no processing is performed.

[Name] FIFO write


La	der formatCondition codeProcessing time (µs)WR (P, S)R7F4R7F3R7F2R7F1R7F0H-2000H-700/300								s)	Remarks							
F1	FWR (P, S)	R7F4	R	7F3	R 7 I	72	R7F1	R7	'FO		H-2	000			H -7 00	/300	
		DER	E	RR	SI	,	V	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
		ţ		•	•		•			53	1.2	72	2.3	10	5.6	144.3	
Co	Command format FIFWR (P, S)		1	No.	of s	tep	8	L			H-2	002			H-702	/302	
FI	FIFWR (P, S)		ond	itio	ons		St	ep		Aver	age	Maxi		Ave	rage	Maximum	
				-			3			44	.3	60	.2	8	8.0	120.2	
	· · · · ·	L			Bi	.t			i	Wo	l ord		Dou	ible	word		
	Usable I/O		x	Y	L,		SS,WD TMR,C ,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
P	FIFO top I/O										0						
n	Contents to written into FIFO								0	0	o	0				0	

[Function]

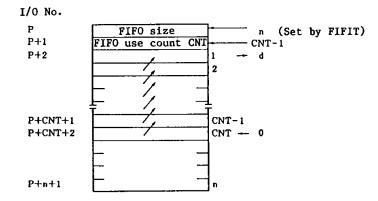
Data is written into the FIFO buffer of the top I/O number P.

When use count CNT < size n, the contents of S are written into P+CNT+2. 1 is added to the use count CNT.

When use count CNT \geq size n, DER (R7F4) is 1 and no data is written.

- When P+n+1 is beyond the I/O limits (WRC3FF, WL03FF, WL13FF, WM3FF), DER (R7F4) is 1 and no data is written.
- . Set n to one of 0 to 256. When n > 256, DER = 1 and no processing is performed.

[Name] FIFO Read


La	dder format			Con	diti	.on	code				1	Proce	ssin	g ti	me (µ	s)	Remarks
FI	FRD (P, d)	R7F4	R	7F3	R	7F2	R7F1	R 7	'FO		H-20	000			H-700	/ 300	n indicates the FIFO size.
		DER	E	RR	5	SD	v	C	;	Aver	age	Maxi	mum	Ave	rage	Maximum	The contents of () are values
		ţ		•			•			75.	8 +	3.9	n	151	.7 +	7.5 n (10.4)	when P and d indicate WL and WY.
Co	mmand format No. of				ste	ps				H-20	002			H-702	/302		
FI	IFRD (P, d) Conditions					St	ep		Aver	age	Maxi	.mum	Ave	rage	Maximum		
							3			63.	2 +	3.2 (5.7	n	126	.4 +	6.2 (8.7)	
_	-				I	Bit	•			Wo	rd		Dou	ble	word		
	Usable I/O	-	x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
Р	FIFO top I/O										o						
d	I/O for stor read data	ing								0	0	0				0	

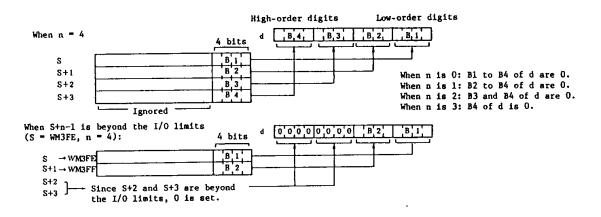
[Function]

Data in the FIFO buffer of the top I/O number P is read.

When 1 ≤ use count CNT ≤ size n: The contents of P+2 are read and written into d. The contents of P+3 to P+CNT+2 are transferred to the previous I/O respectively. O is written into P+CNT+2. The contents of CNT are set to -1. When CNT = 0, no data is read. The previous data is held.

When use count CNT > size n: DER (R7F4) is 1 and no data is read.

- . When P+n+1 is beyond the I/O limits (WRC3FF, WL03FF, WL13FF, WM3FF), DER (R7F4) is 1 and no data is read.
- . Set n to one of 0 to 256. When n > 256, DER = 1 and no processing is performed.

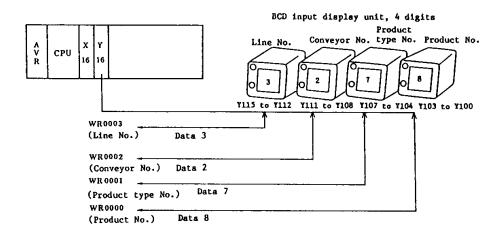

[Name] Connection (Unit)

Lac	lder format		C	Cond	lition	code				I	Proce	ssin	g ti	me (µ	s)	Remarks
UN	IT (d, S, n)	R7F4	R7	7F3	R7F2	R7F1	R 71	FO		H-2	000			H - 7 00	/300	
	ľ	DER	ER	LR.	SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
		ţ		,		•			70	.4	89	.3	14	2.6	181.3	
Cor	mand format		1 N	10.	of st	eps	1		-	H-2	002			H-702	/302	
UN.	IT (d, S, n)	Co	ondi	ltic	ons	St	ер		Aver	age	Maxi	លបង	Ave	rage	Maximum	
			-	-			ł		58	.7	74	.4	11	8.8	151.1	
					Bit			1	Wa	rd		Dou	ıble	word		
	Usable I/O		x	Y	L, M	D,SS,WI IS,TMR,C .CU,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
đ	I/O of connection result writing destination	-							0	0						
S	Top I/O to be connected	•								0						
n	No. of words be connected	to													0	n = 0 to 4

[Function]

The values of low-order 4 bits of n (1 to 4) words from S are set in units of 4 bits from the low-order position of d.

When n is one of 1 to 3, the bits which are not set in d are set to 0. The data from S to S+n-1 is held even if the Unit instruction is executed. When S+n-1 is beyond the I/O limits (WRC3FF, WL03FF, WL13FF, WM3FF), DER (R7F4) is 1 and only the low-order 4 bits from S to the I/O range are set in d.

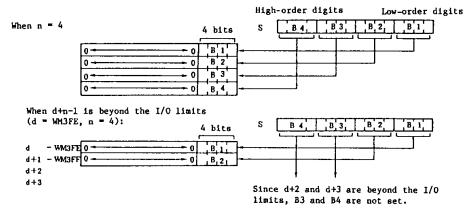

[Precautions]

When n = 0, the instruction is not executed.

X00001 DIF0 UNIT (WY0010. WR0000. 4) LD X00001 AND DIF0 C UNIT (WY0010. WR0000. 4) J

[Program explanation]

A 4-digit BCD input display unit is connected to WY0010 and independent data of WRO to WR3 is displayed in each digit. (Data of only low-order 4 bits of WRO to WR3 are valid.)


[Name] Separation (Distribute)

La	dder format			Cond	litio	n (code					Proce	essin	ıg ti	.me (µ	is)	Remarks
DI	ST (d, S, n)	R7F4	R	7F3	R7F	2	R7F1	R 71	FO		H-2	000			H - 700	/300	
		DER	E	RR	SD)	V	С		Aver	age	Maxi	l.mum	Ave	rage	Maximum	
		1		•	•		•	•		69	•1	88	3.0	13	18.7	177.4	
Со	mmand format		1	No.	of s	tej	ps				H-2	002			H702	/ 302	
DI	ST (d, S, n)	С	Conditions Step				Aver	age	Maxi	mum	Ave	rage	Maximum				
			-				4	4		57.6		73.3		115.6		147.8	
			Bit						;	Wo	rd		Dou	ble	word	I	
	Usable I/O		x	Y	L, 1	MS,	SS,WD TMR,C J,CT	Τ, U,	WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
d	Top I/O of separation destination										0					-	
s	I/O to be separated								0	0	0	0				0	
n	No. of words be separated	to														0	n = 0 to 4

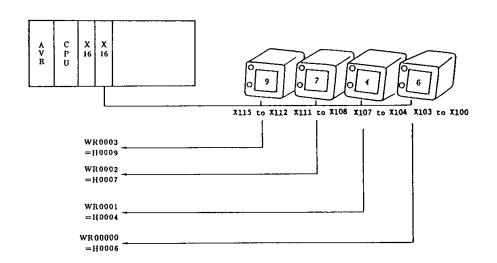
[Function]

S is separated to values of each 4 bits and set in the low-order 4 bits of n words from d. The high-order 12 bits from d to d+n-1 are 0.

The data of S is held even when the DIST instruction is executed. When d+n-1 is beyond the I/O limits (WRC3FF, WL03FF, WL13FF, WM3FF), DER (R7F4) is 1 and the separated data of S is set in the low-order 4 bits from d to the I/O range.

[Precautions]

. When n = 0, the instruction is not executed.


[Program example]

```
        X00001
        DIF0

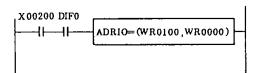
        Image: Image
```

[Program explanation]

The input of the 4-bit and 4-digit Dight switch is connected to WX0010 and each digit data is stored in WR0000 to WR0003 as independent data.

DIST

[Name] I/O address conversion


La	adder format			Con	diti	on	code					Proce	essin	g ti	.me (µ	s)	Remarks
AI	DRIO (d, S)	R7F4 R7F3 R7F2			R7F1	R7	'FO		H-2000 H-700/300				/ 300	H-2000, H-700, and H-300 are			
		DER	E	ERR	S	D	v	С	;	Aver	age	Maxi	สมอ	Ave	erage	Maximum	for CPUP-**H.
		.		•	.		•	.		2.	.3	*		4	.2	+	
Co	ommand format	No. of steps					H-2	002			H-702	/302					
ADRIO (d, S)		с	Conditions				St	ep		Aver	age	Maxi	. mu m	Ave	rage	Maximum	
		-		3			1.9		4		3.5		÷				
		Bit				1			Word		Dou		uble word				
	Usable I/O		X	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
d	Conversion address									0	0						
s	I/O to be converted		0	0	o				0	0	0						

[Function]

Real address from S to d

. The real address of the I/O specified by S is determined and set in d.

[Program example]

[Program explanation]

• The real address (H3COO) of WRO is set in WRO100 at the leading edge of X00200. After the instruction is executed: WRO000 WRO100 H3COO

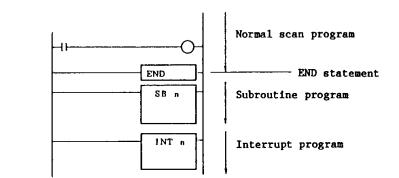
[Precautions]

. In this instruction, only CPU2-**H and CPUP-**H are valid. The CPUs other than them are the same as NOP (no operation).

[2] Control Command

.

 •	 	


Ladder format		Condition code							1	Processing time (µs)					Remarks
END	R7F4 R7F3 R7F2			R7F1 R7F0		0		H-2(000			H-700	/300	···	
	DER	ERR	5	SD	v	С	Ave	Aver	age	Maxi	สบล	Ave	rage	Maximum	
	•			•	•	•		5.	5	+	-	11	.5	*	
Command format	No. of steps							H-20	002			H-702	/302		
END	Conditions			St	ер		Aver	age	Maxi	.mum	Ave	erage	Maximum		
	-			1			4.6		*		9.6		*		
<u> </u>	Bit							Word		Dou		uble word			
Usable I/O		x y	R, L, M	MS	,SS,WI ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other

[Name] Ending normal scan (END)

[Function]

[Usage]

- . This statement indicates the end of a normal scan program. (When this statement is executed, control is returned to the top of the program and normal scan is executed.)
- . If no subroutine or interrupt scan program is available, this statement is not required.
- . If a subroutine or interrupt scan program is available, code this statement at the end of a normal scan program.
- . Code this statement only once in a program. Do not enter a start condition.

[Precautions]

. The END statement is checked before operation starts. If an error is found, one of the following error codes is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0010	No END statement is coded.	Code an END statement.
		H0022	Two or more END statements are coded.	Delete the unnecessary END statements.
		H0032	A start condition is set in the END statement.	Delete the start condition.

 · · · · · · · · · · · · · · · · · · ·	 	
 	 · · · · · · · · · · · · · · · · · · ·	

Ladder format	Condition code								Proce	essir	ng ti	ime (µ	s)	Remarks		
CEND (S)	R7F4 R7F3 R7			F2	R7F1	R7F	ro		H-2	000			H-700	/300		
	DER	E	RR	S	D	v	с		Aver	age	Maxi	mum	Ave	erage	Maximum	
	•		•			•			9.	0	+		18	3.0	+	
Command format			No.	of	ste	ps			-	H-2	002			H-702	/302	
CEND (S)	C	ond	iti	ons		St	ep		Aver	age	Maxi	สมส	Ave	rage	Maximum	
			-			2			7.	5	+		15	5.0	+	
			·	B	it				Wo	rd		Dou	ible	word		
Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S Scan end condition		0	0	0												

[Name] Conditional end of scan (CONDITIONAL END)

[Function]

. When this statement is executed with scan end condition S satisfied, control is returned to the top of the normal scan program and the program is executed.

- . When this statement is executed with scan end condition S not satisfied, the next statement is executed.
- . This statement can be executed only in a normal scan program. This statement can be coded as many times as desired.
- . A start condition can be set in this statement. When both S and the start condition are satisfied, this statement is executed.

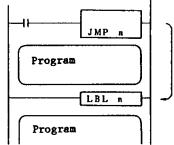
[Usage]

Top of the program Normal scan program	When R000 is turned on, control is returned to the top of the program.
CEND(ROOO)	When ROOO is turned off, the next statement is executed. When ROO1 is turned on, control
CEND(ROO1)	is returned to the top of the program When ROO1 is turned
Normal scan program END	off, the next state- ment is executed.

[Precautions]

. The CEND statement is checked before operation starts. If an error is found, the following error code is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0023	A CEND statement follows an END statement.	Place a CEND statement before an END statement.


Ladder format	Condition code						Processing time (µs)							Remarks
JMP n	R7F4	R7F3	R7F2	R7F1	1 R7F0	o		H-2	000			H-700	/300	
	DER	ERR	SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
	•	1	•	•	•		57	.8	69	.3	IJ	.7.5	141.0	
Command format		No.	of st	eps	4			H-2	002			H-702	/302	
JMP n	Co	Conditions		St	ер		Aver	age	Maxi	.œuœ	Ave	rage	Maximum	
		-		2	2		48	.2	57	.7	9	7.9	117.5	
			Bit				Wo	rđ		Dou	ble	word		
Usable I/O		X Y	L, M	D,SS,WI S,TMR,C CU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
n Code No.													0	O to 255 (decimal)

[Name] Unconditional jump (JUMP)

[Function]

- . When the start condition in JMPn is satisfied, the program is jumped from this statement to LBLn having the same code number as JMPn. JMPn must be paired with LBLn.
- . When the start condition is not satisfied, the next statement is executed.
- . When this statement is placed together with other statements in an arithmetic box, this statement must be the last statement in the box.
- . The effect of this statement is valid only in the same scan program. (This statement cannot cause a jump from a normal scan program to a subroutine or interrupt scan program, or vice versa.)
- . JMPn statements can be nested. However, take case so that cycle time over errors are not caused.

[Usage]

- . When the start condition is satisfied, a jump to LBLn occurs.
- . If the program to which control is jumped has a timer, the elapsed time is updated but no statement is executed. Therefore, output is disabled even if the ON condition is satisfied.

[Precautions]

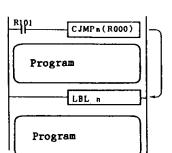
. This statement is checked during execution. If an error is found, one of the following error codes is set in internal special output registers R7E3 and WRF015. In this case, no jump occurs and the next program is executed.

	l special register	Error code	Nature of error	Action
R7E3 = "1"	WRF015	H0015	No LBLn is found.	Define LBLm as a jump destination.
		H0040	An attempt was made to jump to another program.	Correct the program so that a jump to another program area does not occur.

	<u>.</u>		
1			
<u></u>			
1			1
	· · · · · · · · · · · · · · · · · · ·	·	
1			

Ladder format	Condition code					Processing time (µs)							Remarks		
CJMP n	R7F4 R7F3			R7F	2 R71	1 R	7 F0	н-2000)0 H-70			/300	
	DER	E	RR	SD	v		5	Aver	age	Maxi	.ธนช	Ave	rage	Maximum	
	•	1	1	•	•		•	59	.4	70	.9	12	0.6	144.1	
Command format	ommand format No. of step		teps	s H-			H-2	2002 H-702/3			H-702	/302			
CJMP n	C	ond	iti	ons		Step		Aver	age	Maxi	.ouo	Ave	rage	Maximum	
		-				3		49.5		59.1		100.5		120.1	
		Bit						Word Double word							
Usable I/O		x	¥	L,	TD,SS, MS,TMF RCU,C1	,cu,	wx	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
n Code No.														0	O to 255 (decimal)
S Jump conditi	.on	0	0	0		·			1			1			

[Name] Conditional jump (CONDITIONAL JUMP)


[Function]

. When jump condition S in CJMPn (S) is satisfied, the program is jumped from this statement to LBLn having the same code number as CJMPn (S). CJMPn (S) must be paired with LBLn.

. When the start condition or jump condition is not satisfied, the next statement is executed.

- . When placing this statement together with other statements in an arithmetic box, take care. If the condition is satisfied, a jump occurs without the remaining operations in the box being performed.
- . The effect of this statement is valid only in the same scan program. (This statement cannot cause a jump from a normal scan program to a subroutine or interrupt scan program, or vice versa.)
- . CJMPn (S) statements can be nested. However, take case so that cycle time over error is not caused.

[Usage]

- . When both the I/O ROOD bit for the start condition and that for the jump condition are satisfied, a jump to LBLn occurs.
- . If the program to which control is jumped has a timer, the elapsed time is updated but no statement is executed. Therefore, the timer coil is not turned on even if the ON condition is satisfied.

[Precautions]

. This statement is checked during execution. If an error is found, one of the following error codes is set in internal special output registers R7E3 and WRF015. In this case, no jump occurs and the next program is executed.

Internal output r	special egister	Error code	Nature of error	Action			
R7E3 = "1"3.	WRF015	H0015	No LBLn is found.	Define LBLn as a jump destination.			
- 13.		ноо4о	An attempt was made to jump to another program.	Correct the program so that a jump to another program area does not occur.			

 ······································	
	 · · · · · ·

[Name]	Reserve	(RESERVE)
--------	---------	-----------

Ladder format	Condition code						Processing time (µs)							Remarks
RSRV n	R7F4	R7F4 R7F3 R7F2		R7F1	R7 1	FO	0 н-2000				H-700/300			
	DER	ERR	SD	v	с		Aver	age	Maxi	ສບສ	Ave	rage	Maximum	
	•	1	•	•	•		60	.2	71	.7	12	2.0	145.7	
Command format		No. of steps				H-2002				н-702/302				
RSRV n	Co	Conditions			Step		Average		Maximum		Average		Maximum	
		-			2		50.2		59.4		101.7		121.4	
· · · · · · · · · · · · · · · · · · ·		Bit					Word Dou			ouble word				
Usable I/O		х у	L, M	D,SS,WI S,TMR,C CU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
n Code No.													o	O to 255 (decimal)

[Function]

- . This statement can be used for exclusive control between a BASIC module and a CPU module. The statement must be paired with a FREE statement. When the CPU module executes an RSRVn statement, the operation of the CPU depends on the status of the BASIC module.
 - 1. If the BASIC module executes a RESERVE statement and locks the CPU, the CPU jumps to LBLn indicated by the code number in RSRVn.
 - 2. If the BASIC module executes a FREE statement and releases the CPU, the CPU executes the subsequent statements.
- . When the BASIC module executes a RESERVE statement, the operation of the BASIC module depends on the status of the CPU module.
 - 1. If the CPU module executes a RESERVE statement and locks the CPU, the BASIC module waits for 10 ms.
 - 2. If the CPU module executes a FREE statement and releases the CPU, the BASIC module executes the subsequent statements.
- . RSRVn must be paired with LBLn having the same code number.
- . The effect of RSRVn statement is valid only in the same scan program. (This statement cannot cause a jump from a normal scan program to a subroutine or interrupt scan program, or vice versa.)
- . RSRVn statements can be nested. However, take case so that cycle time over error is not caused.

[Precautions]

. This statement is checked during execution. If an error is found, one of the following error codes is set in internal special output registers R7E3 and WRF015. In this case, no jump occurs and the next program is executed.

Internal output r	special egister	Error code	Nature of error	Action				
R7E3 = "1"	WRF015	H0015	No LBLn is found.	Define LBLn as a jump destination.				
- 1		H0040	An attempt was made to jump to another program.	Correct the program so that a jump to another program area does not occur.				

[Syntax of JMP, CJMP, and RSRV]

(1) LBLn having the same code number (n) as the JMP statement is required.

JMP 1	
Program A	. If JMP1 is executed without LBL1, an error indicating that no
LBL 2	LBL is defined is caused. When this happens, the next program A is executed without JMP1
Program B	being executed.

(2) A jump beyond the area including the JMP statement cannot be caused.

Top of the	program	
Normal	JMP 1	
scan area	LBL 7	-1
	JMP 2	
	LBL 3 -	
	117	
	END	¥
	58	ł
Subroutine		1
area	LBL 2	
	JMP 4	1
	RTS	
		ļ
Subroutine		
area		
arca		
	PTS 🖌	
	1NI ()	
		¥
Interrupt	JMP 6	Ť
•		1
scan area	LBL S	1
	JMP 7	
	I.BL 1	
	RTI	

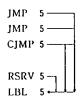
- . LBL1 is not in the normal scan area. If the JMP1 statement is executed, an error indicating an out-of area jump occurs. When this happens, the next statement is executed without the JMP1 statement being executed.
- . JMP2 to JMP7 function in the same way as JMP1.

(3) LBLn having the same code number (n) as the JMP statement must not be duplicated.

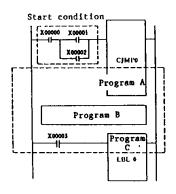
- . In processing before operation, label statements (A) and (B) have the same code number whose value is 5. This causes a duplicated definition error.

(4) JMP statements can be nested.

JMP	0	_
JMP	1	-1
JMP	2	
LBL	1	
LBL	0	ل
JMP	3	7
LBL	2	•
JMP	4	
LBL	3	•
LBL	4	لم

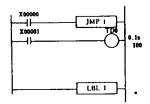

(5) The JMP statement can cause a jump to an statement before it.

LBL 0 🔶	
CJMP1, (X00000)	
JMP 0	
$L \rightarrow LBL = 1$	


- . When input X00000 is turned on, control exits from the loop between LBLO and JMPO by jumping from CJMP1, (X00000) to LBL1.
- . If CJMP1, (X00000) or another statement that exits control from the loop is not coded, the program loops indefinitely between LBLO and JMPO.

. JMPO causes a jump to JBLO placed before it.

(6) JMP statements having the same code number can be duplicated.



(7) A start condition can be programmed for a JMP statement.

. If a jump is made from CJMPO to LBLO, programs A, B, and C are not executed.

- (8) The CJMP and RSRV statements also conform to the syntax described in (1) to (7) above.
 - Note 1: When a JMP statement causes a jump to LBL, the status of each I/O between JMP and LBL is retained. However, the elapsed time in the timer is updated.

 If X00001 is turned on then X00000 is turned on, the elapsed time in TDO is updated even if a jump is made from JMP1 to LBL1.
 If X00000 is left on, TDO is not turned on even if it exceeds 100.

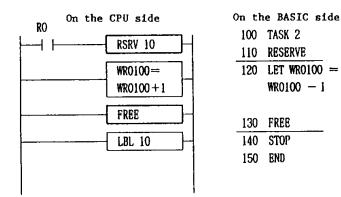
Note 2: When a JMP instruction is combined with an MCS or MCR statement, operation is performed as follows. Take care when programming this combination.

X00000	
X00001	Program MCS0
	Program
X00002	Y86166
1	MCRO
	RST

- . When JMP2 does not cause a jump, Y00100 is turned on with X00001 and X00002 turned on.
- . When JMP2 causes a jump and X00000 is turned on, Y00100 conforms to the on-off status of X00002 regardless of whether X00001 is turned on or off.

Note 3:

Do not create a circuit that causes a jump outside between MCS and MCR.


	 	· · · · · · · · · · · · · · · · · · ·

Ladder format	Condition code				Processing time (µs)					Remarks			
FREE	R7F4	R7F3	R7F2	R7F1	R7F0		H-2	000			H-700	/300	
	DER	ERR	SD	v	с	Aver	age	Maxi	.toum	Ave	rage	Maximum	
	•	•	•	1.	•	3.	1	+-		6	.1	+	
Command format		No.	of st	eps	J		H-2	002			H-702	/302	
FREE	Ce	onditio	ons	St	tep	Aver	age	Maxi	mum	Ave	rage	Maximum	
		-		1	1	2.	6	~		5	5.1	+	
			Bit			Wo	ord		Dou	ıble	word		
Usable I/O	ſ	x y	L, M	D,SS,WI S,TMR,(CU,CT		x wy	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other

[Name] Freeing reserve (FREE)

[Function]

- . This statement uses a BASIC module for exclusive control.
- . This statement must be paired with an RSRVn statement. (After RSRVn is executed, be sure to execute FREE.)
- . This statement must be placed before LBLn to which a jump is caused by RSRVn.

[Usage]

- . The ladder program executes RSRV10 first. The BASIC program waits at RESERVE until the ladder program executes the FREE statement.
- . The BASIC program executes the RESERVE statement first. The CPU uses RSRV10 to jump to LBL10. The CPU continues jumping until the BASIC program executes the FREE statement.

[Precautions]

Ladder format		Condition code					Processing time (μ s)					s)	Remarks
LBL n	R7F4	R7F3	R7F2	R7F1	R7 F0		H-2	000			H-700	/300	
	DER	ERR	SD	v	С	Ave	rage	Maxi	nun	Ave	rage	Maximum	
	•	•	•	•	•	0	.5	+		1	.1	+	
Command format	1	No.	of ste	eps	J		H-2	002			H-702	/302	
LBL n	Co	onditi	ons	St	сер	Ave	erage Maximum Average Ma		Maximum				
		_		1	L	0	.4	+		0	.9	+	
			Bit			W	ord		Dou	ble	word		
Usable I/O		X Y	L, M	D,SS,WI S,TMR,C CU,CT		x wy	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
n Code No.				-								0	0 to 255 (decimal)

[Name] Label (LABEL)

[Function]

- . This statement is a destination to which a jump is made when JMPn, CJMPn(S), or RSRVn is executed. (The number n in LBLn must be the same as that in JMPn, CJMPn(S), or RSRVn.)
- . The number n in LBLn must not be duplicated in the same program.
- . This statement itself performs nothing.
- . Any start condition in LBLn is ignored.

[Precautions]

. This statement is checked before operation starts. If an error is found, the following error code is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0001	LBL is defined twice.	Delete the unnecessary LBLn.

	· · · · · · · · · · · · · · · · · · ·	· <u> </u>	
L.,			

[Name] IVK	[Name]	FOR
------------	---	-------	-----

Ladder format		I	Cond	litior	code				Proce	ssin	g ti	me (µ	s)	Remarks
FOR n (S)	R7F4	R	7F3	R7F2	R7F1	R7F0	7F0 H-2000				H700	/300		
	DER	E	RR	SD	v	с	Ave	rage	Maxi	mua	Ave	rage	Maximum	
	•		D	•	•	•	1	1.7	83	.0	2	4.3	166.4	
Command format			No.	of st	eps	J		H-2002			H-702/302			
FOR n (S)	C	Conditions					Ave	rage	Maxi	mum	Ave	rage	Maximum	
		-				3		9.7		69.2		0.2	138.7	
	[Bit			W	ord		Dou	ible	word		
Usable I/O		x	Y	L, 1	TD,SS,WI IS,TMR,C RCU,CT		x wy	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
n Code No.													0	O to 49 (decimal)
S Repetition of	count						0	0						

[Function]

. This statement is a destination to which a jump is made from NEXTn having the same code number as this statement.

When repetition count S is greater than 0, the next statement after FORn(S) is executed. When repetition count S is equal to 0, a jump is made to the next statement after NEXTn.

- . FORn(S) must be paired with NEXTn. NEXTn must be placed after FORn.
- . FORn(S) must not be duplicated.
- . FORn(S) and NEXTn must be in the same program area. (For example, a program containing FORn(S) in the normal scan area and NEXTn in the subroutine area is not allowed.)
- . FORn(S)-NEXTn loops can be nested up to five levels. For details, see NEXTn.

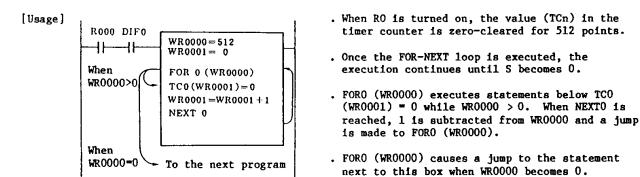
FOR

[Precautions]

. This statement is checked before operation starts. If an error is found, the following error code is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	н0001	LBL is defined twice.	Delete the unnecessary LBLn.

. If an error occurs during execution of this statement, one of the following error codes is set in internal special output registers R7E3 and WRF015 and the next program is executed.


	al special register	Error code	Nature of error	Action					
R7E3 WRF015 H0017 No -"1"		H0017	No NEXT is defined.	Define NEXT corresponding to FORn.					
- T		H0043	Invalid NEXT for FOR	Code NEXTn after FORn.					
		ноо44	NEXT in an invalid area	Place NEXTn in the area containing FORn.					
		H0045	Invalid FOR-NEXT nesting	FOR-NEXT loops are not nested.					
		ноо46	Too many FOR nesting levels	Reduce the number of FOR-NEXT nestin levels to 5 or less.					

[Name] N

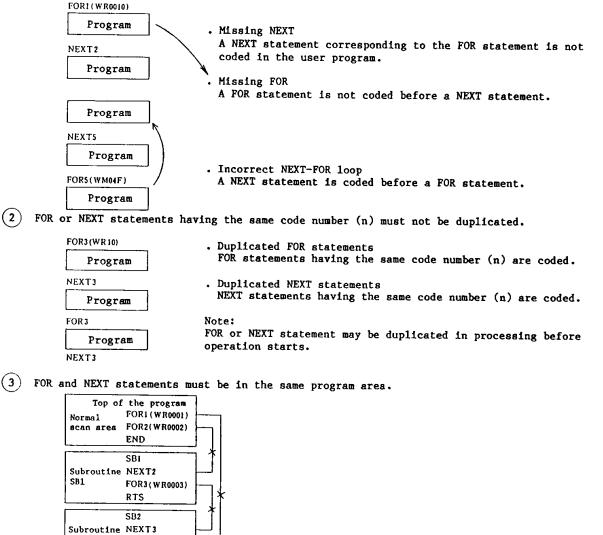
Ladder format			Cond	litior	code			Processin			ıg ti	me (µ	s)	Remarks	
NEXT n	R7F4	R	7F3	R7F2	R7F1	R7 F	70		H-2	1-2000		1	H-700	/300	, e
	DER	E	RR	SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
		(1)	•	•	•		17	.6	34	.8	3	4.4	70.8	
Command format		4	No.	of st	eps	.1		н–2002			H-702/302				
NEXT n	Conditions					Step		Aver	age	Maximum		Average		Maximum	
	-		-		:	2		14	.7	29	.0	2	8.7	59.0	
	Bit							Word		Dou		uble word			
Usable I/O		X	Y	L, M	D,SS,WI IS,TMR,C CU,CT		wx	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
n Code No.														0	0 to 49 (decimal)

[Function]

. This statement subtracts 1 from repetition count S in FORn(S) having the same code number as this statement. Then, this statement causes a jump to FORn(S).

[Precautions]

. This statement is checked before operation starts. If an error is found, the following error code is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.


CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0003	The NEXT statement is defined twice.	Delete the unnecessary NEXTn.

. If an error occurs during execution of this statement, one of the following error codes is set in internal special output registers R7E3 and WRF015 and the next program is executed.

	l special register	Error code	Nature of error	Action				
R7F3 ="1"	WRF015	H0016	No FOR is defined.	Define FORn corresponding to NEXTn.				
- 1		H0046	Too many FOR nesting levels	Reduce the number of FOR-NEXT nesting levels to 5 or less.				

[Syntax of FOR-NEXT]

(1) A NEXT statement having the same code number (n) as a FOR statement is required after the FOR statement.

ig(4ig) Use a FOR-NEXT nesting structure.

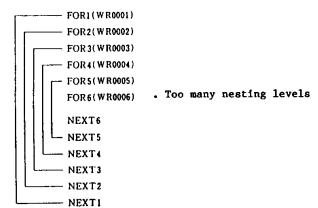
NEXTI RTI

Interrupt NEXT4 scan area NEXT1

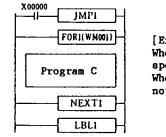
FOR4(WR0004) RTS

SB2

- FOR1 (WM001)	The statements from FOR1 (WM001) to NEXT are executed normally.
Program	interesting (another of their are exceded normally)
FOR 2 (WM002)	o Nesting error When WM002 = 0
Program	The statements from FOR1 (WM001) to NEXT1 are given
- NEXTI	priority. Therefore, a jump from FOR2 across NEXT1 to NEXT2 does not occur. NEXT2 causes an error due to an undefined
Program	FOR2.
NEXT 2	When WMOO2 ≠ 0 FOR2 does nothing. NEXT2 causes an error due to an undefined FOR2.

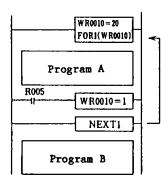

FOR NEXT (5) A jump statement can be used to exit from a FOR-NEXT loop.

CJMP10(X00000)


LBL10

. When X00000 is turned on before the FOR1-NEXT1 loop is executed by the specified number of repetitions (contents of WH1), the program can exit from the loop.

(6) Up to five FOR-NEXT loops can be nested. If a subroutine is included, the FOR-NEXT loops in it are also counted.



(7) Do not include start conditions in a FOR-NEXT loop. (See the circuit diagram below.)

[Explanation] When X00000 is off, program C is executed by the number specified by WM1. When X00000 is on, a jump occurs from JMP1 to LBL1. Program C is not executed.

(8) The repetition count can be changed in the program.

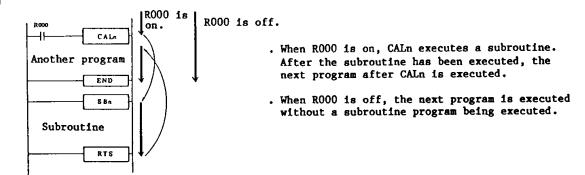
The contents of WR0010 are subtracted by one and a jump is made to FOR1 (WR0010).

. When R005 is off After program A is executed 20 times, program B is executed.

. When R005 is on

The number of repetitions indicated by WR0010 becomes 1 and 1 is subtracted in processing of NEXT1. So, the contents of WR0010 become 0. This terminates repetition of program A and executes program B.

 ··-	 	


Ladder format		C	Cond	ition	code		Processing time (µs)				Remarks				
CAL n	R7F4	R7	'F3	R7F2	R7F1	R7F	70		H-2	000			H-700	/300	
	DER	ER	R	SD	V	С		Aver	age	Maxi	muna	Ave	rage	Maximum	
	•	Q)		•	•		19	.0	+		3	6.4	+	
Command format		N	۱o.	of st	eps		-	н-2002				H-702	/302		
CAL n	Conditions				SI	Step		Average		Maximum		Average		Maximum	
		-	-		:	2		15	.8	+		1	5.8	+	
				Bit				Wo	rd		Doι	ıble	word		
Usable I/O		x	Y	L, M	D,SS,WI S,TMR,O CU,CT		wx	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
n Code No.								-						0	0 to 99 (decimal)

[Name] Subroutine call (CALL)

[Function]

- . When the start condition in the CALn statement is satisfied, the subroutine having the same code number (program bracketed by SBn and RTS) as the statement is executed.
- . When the start condition is not satisfied, the next program is executed.
- . Up to five other nested subroutines can be called from a subroutine. (The maximum nesting level is 5.)
- . This statement can also call a subroutine in the interrupt scan program.

[Usage]

[Precautions]

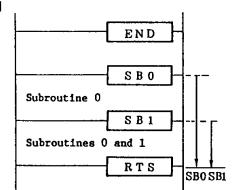
. If an error is found during execution of this statement, one of the following error codes is set in internal special output registers R7E3 and WRF015. In this case, the next program is executed.

	l special register	Error code	Nature of error	Action				
R7F3	WRF015	H0013	No SB is found.	Define an SBn-RTS pair for CALn.				
="1"		H0041	Too many nesting levels	Reduce the number of subroutine nesting levels to 5 or less.				

1
1

Ladder format		C	Cond	ition	code					Proce	(a)	Remarks			
SB n	R7F4 R7F3 R7F2		R7F1	71 R7F0			H -2	000		н-700/300					
	DER	ER	R	SD	v	с		Aver	age	Maxi	mum	Ave	rage	Maximum	
	•	Q		•	•	•		0.	5	+		1	.1	4	
Command format	No. of steps				H-2002				H-702/302						
SB n	Conditions			St	.ep		Aver	age	Maxi	מטמ	Ave	rage	Maximum		
		-	•	_	1		0.4		4	+		0.9		+	
				Bit				Word			Double wo		ble word		
Usable I/O		x	Y	l, MS),SS,WD ,TMR,C CU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
n Code No.							_							0	O to 99 (decimal)

[Name] Subroutine start (SUBROUTINE)


[Function]

. This statement declares the beginning of a subroutine. (This statement processes nothing.)

. The number n in SBn must not be duplicated in the same program.

- . Any start condition in SBn is ignored.
- . SBn must be paired with RTS.
- . Place the subroutines from SBn to RTS after an END statement.

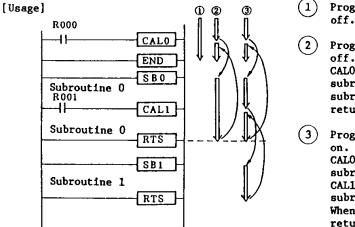
[Usage]

- . When CALO is executed, the program from SBO to RTS is executed as a subroutine.
- . When CALl is executed, the program from SB1 to RTS is executed as a subroutine.

[Precautions]

. This statement is checked before operation starts. If an error is found, one of the following error codes is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	· Action
34	WRF001	H0004	SB is defined twice.	Delete the unnecessary SBn.
		H0013	SB is not defined.	Define SBn corresponding to RTS.



Ladder format	Ladder format Condition					le				Proce	Remarks				
RTS	R7F4 R7F3 R7F2			2 R7	FI R	7 F0	F0 H-2000					H-700	/300		
	DER	E	RR	SD	v	7	5	Aver	age	Maxi	mum	Ave	rage	Maximum	
	•		•	•		,		12	.5	+		2	4.1	+	
Command format No. of a		of s	teps			H-2002			H-702/302						
RTS	Conditions					Step		Aver	age	Maxi		Average		Maximum	
		-	-			1		10.4		*		20.1		+	
				Bİ	t			Wo	ord		Dou	ıble	word		
Usable I/O		x	Y	L,	-	S,WDT, MR,CU, CT	wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other

[Name] Subroutine end (RETURN SUBROUTINE)

[Function]

- . This statement declares the end of a subroutine.
- . When this statement is executed, the next program after the CALn statement that called a subroutine is executed.
- . Any start condition must not be entered in this statement.

[Precautions]

Program execution when both R000 and R001 are off.

) Program execution when R000 is on but R001 is off. CALO is executed and control is passed to subroutine 0. CAL1 is not executed. When

subroutine 0 is terminated, control is returned to the next program after CALO.

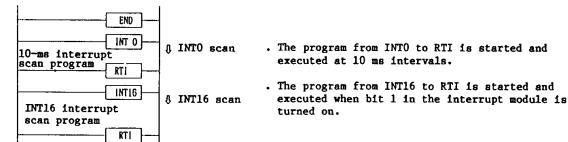
 Program execution when both R000 and R001 are on.
 CALO is executed and control is passed to subroutine 0.

CAL1 is executed and control is passed to subroutine 1. When subroutine 1 is terminated, control is returned to the next program after CAL1. When subroutine 0 is terminated, control is returned to the next program after CAL1.

. This statement is checked before operation starts. If an error is found, one of the following error codes is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0011	RTS is not defined.	Define RTS corresponding to SBn.
		H0020	RTS in an invalid area	Place RTS after END. RTS cannot be used in the interrupt program.
		ноозо	Invalid start condition in RTS	Do not enter any start condition in RTS.

La	dder format		Co	ndi	tion	code					Proce	ssin	ıg ti	me (µ	is)	Remarks
IN	Tn	R7F4 R7F3 R7F2		R7F1	R7F	0		H-2	000			H ~ 700	/300			
		DER	ERR		SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
		•	•		•	•			0.	5	+		1	.1	+	
Command format No. of steps				H-2	002 н-70			H-702	/302							
INT n		Conditions				Step			Aver	age	Maxi	aum	Ave	rage	Maximum	
						1		0.		4	+		0.9		+	
					Bit				Wo	rd	•-	Dou	ble	word	·	
Usable I/O			x y	R L M	, MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
n	Interrupt priority														o	0 to 2, 16 to 31 (decimal)


[Name] Starting interrupt scan (INTERRUPT)

[Function]

. This statement declares the beginning of an interrupt scan program.

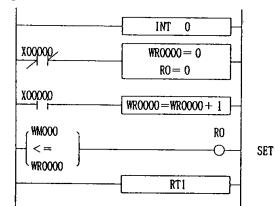
- . When n is from 0 to 2, periodic interrupt scan takes place. When n is from 16 to 31, interrupt scan is caused by an interrupt module.
- . A smaller value of n indicates a higher interrupt priority.
- . INTn must be paired with RTI.
- . Any start condition in INTn is ignored.
- . Place the interrupt scan programs from INTn to RTI after an END statement.
- . The number n in INTn must not be duplicated in the same program.

[Usage]

[Precautions]

• This statement is checked before operation starts. If an error is found, one of the following error codes is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0005	INT is defined twice.	Delete the unnecessary INTn.
		H0014	INT is not defined.	Define INTn corresponding to RTI.


Ladder format		Co	nditi	on	code					Proce	essir	ng ti	lme ()	ıs)	Remarks
RTI	R7 F4	R7F	3 R7	F2	R7F1	R7F	70		H-2	000			H-700	/300	
	DER	ERR	s	D	v	с		Avez	age	Maxi	mum	Ave	erage	Maximum	
	•	•		_	•	•		5	5.1	+	-		10.5	+	
Command format	No. of steps							H-2002				H-702/302			
RTI	Co	Conditions				Step			Average		מטמ	Average		Maximum	
		-		1			4.2		*		8.7		+		
			В	it			ı _	Wa	rd		Dou	ble	word		
Usable I/O		X Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other

[Name]	Ending	interrupt	scan	program	(RETURN	INTERRUPT)
--------	--------	-----------	------	---------	---------	------------

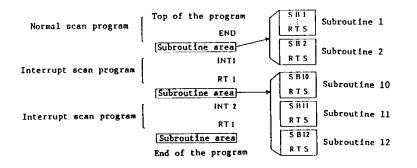
[Function]

- . This statement declares the end of an interrupt scan program.
- . When this statement is executed, control is returned to the program which was being executed before interrupt scan was performed.
- . Any start condition must not be entered in this statement.

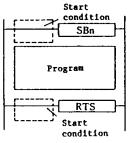
[Usage]

- . A 0.01-s timer is created using interrupts generated at 10 ms intervals. The setting is set in WM000. The expired time is set in WR0000. R0 is used as a timer coil.
- . When X00000 is off, the expired time and timer coil are cleared.
- . When X00000 is on, the expired time is incremented by one at 10 ms intervals.
- . When WM000 < = WR0000, the timer coil is turned on.

[Precautions]

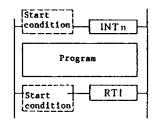

. This statement is checked before operation starts. If an error is found, one of the following error codes is set in internal special output register WRF001. In this case, 34 is displayed as the CPU error code.

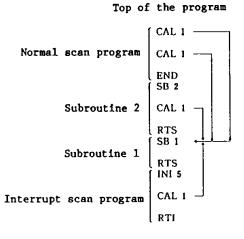
CPU display	Internal special output register	Error code	Nature of error	Action
34	WRF001	H0012	RTI is not defined.	Define RTI corresponding to INTn.
		H0021	RTI in an invalid area	Place RTI after END. RTI cannot be used in SBn.
		H0031	Invalid start condition in RTI	Do not enter any start condition in RTI.

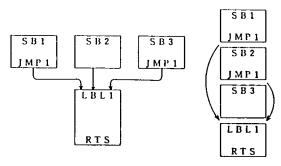

[Syntax of SBn, RTS, INTn and RTI]

(1)

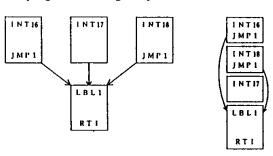
Subroutines can be placed between a normal scan program and interrupt scan program, between interrupt scan programs, or after the last interrupt scan program.

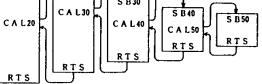

(2) The Subroutine Start (SBn) and Subroutine End (RTS) statements must not contain any start condition.


- Since a start condition is set in RTS, an error occurs in processing before operation.


(3) The Starting Interrupt Scan (INTn) and Ending Interrupt Scan Program (RTI) statements must not contain any start condition.

(4) A subroutine can be called from the normal scan program, the interrupt scan program, or another subroutine.


(5) Subroutines having many entries and one exit can also be coded.


(6)

(7)

) Scan programs having many entries and one exit can also be coded.

Subroutines can be nested at up to five levels. 1 level 2 levels 3 levels 4 levels 5 levels 5 B 1 5 B 20 5 B 30 5

Top of the program

	END			
	S B 20]		
	RTS	J		
—	SB1	1		
	RTS	ļ		
INT 5				

INT 5				
	RT 1			
	S B 40			
L	RTS			
-	S B 30			
	RTS			
	S B 50			
	RTS			

(1) There is no relationship between the order of subroutines and the nesting order, as shown on the left.

Ladder format		Condition code								Remarks					
START n	R7F4	R7	F3	R7F2	R7F1	R7F(5		H-2	000			H-700	/300	
	DER	ER	R	SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
		•		•	•	•		7	.1	+		1	4.9	+	
Command format		N	0.	of st	eps	1	-1-		H-2	002			H-702	/302	
START n	Co	ndi	tio	ns	St	ep		Aver	age	Maxi	DUM	Average		Maximum	
		-			2	2		5	.9	+		1	2.4	+	
				Bit	· • · · · · · · · · · · ·			Wo	rd		Dou	ble	word		
Usable I/O		x	Y	L, M	D,SS,WI S,TMR,C CU,CT		νх	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
n No. of task be started	to				<u> </u>									o	l to 16 (decimal)

[Name] Starting BASIC program task (START)

[Function]

[Usage]

- . This statement can be used to start a BASIC program task from a ladder program with a BASIC module.
- . When the value of n is not from 1 to 16, DER is set to 1, preventing this statement from being executed.
- . When this statement is executed normally, DER is set to 0.

On the ladder program side DIF STARTN BASIC program 100 TASK N 110 ... 120 900 END

- . When the ladder program executes this statement, a BASIC program task is started.
- . When TASKn corresponding to STARTn is not present in the BASIC program, the BASIC module displays error code 90 indicating that an attempt was made to start an undefined task. However, the ladder program terminates normally.

[Precautions]

. Be sure to specify edge detection in this statement as a start condition.

[3] Transfer Command for Sophisticated Function Module

	 	······································
	 · · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	····· · · · · · · · · · · · · · · · ·	

Name General purpose port communication command

La	dder format			G	onditio	on code						Pro	ces	sing t	ime (µs))	Remarks
TR	NSO (d,s,t)	R7F	4	R7F	3 R7F2	2 R7F1	R7F	0		H-	200	0			H-700)/ 300	
		DER		ERR	SD	v	С		Αv	erage		Max	iau	m A	verage	Maxim	 um
		\$		•	•	•	•				-						
Co	mmand format			No	of st	eps	.			H-:	200	2			H-702	/302	
TR	NSO (d,s,t)	С	ond	itio	ons	St	ep		Αv	erage		Max	imu	na A	verage	Maxim	σι
				-		5				96		1	77		180	334	
					Bi	t			W	ord		Do	uble	e word			
	Usable I/O		x	Y	R,L,M	TD,SS, MS,TMR CUR,CT	,CU,		WY	WR,WL WM	тс	DX	DY	DR,DL DM	Constan	t Array	Other
d	Module instal lation locati								0						-		
s	Top of parame area	ter								o							In regard to "s," up to s + 14 is used.
t	Top of commun cations contr bit area				0												In regard to "t," up to t + 11 is used.

Function

- 1. This is the communication command for the general purpose port used by the CPU ladder program.
- 2. The top I/O No. of the parameter area is set in s, which in turn sets the various parameters (top of the transmitted/received data area and size, time out value, transmission code) used for communications.
- The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.
- 4. The arbitrarily mounted WY is set in d. (Dummy constant)
- 5. The TRNSO command can receive after transmission.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 14 and t + 11 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

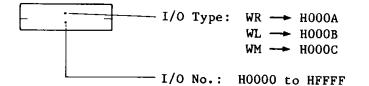
5. Description of the s area

S	(1) Return code
S+1	(2) System area (not usable by the user)
S+3	(3) Time out time
S+4	(4) Top I/O of the transmission data area
S+6	(5) Transmission data area size
S+7	(6) Top I/O of the transmission data area
S+9	(7) Reception data area size
S+10	(8) Reception data length
S+11	(9) Starting code
S+12	(10) Ending code
S+13	(11) Transmission speed
S+14	(12) Transmission format

User write prohibit area

(1) Return code:

The execution results of the TRNSO command are set. Normal end $\rightarrow 0$ Abnormal end $\rightarrow \neq 0$ (See Table _._ for details.)


(2) System area:

When the TRNSO command is executed, this area is used for system processing of the TRNSO command. This area cannot be used by the user.

(3) Time out time:

This sets the time out time from the top of the TRNSO command execution to its completion. = 0: No time out checking. \$\no 0: \$\$10 ms time out check executed. (4) Top I/O of the transmission data area:

This designates top I/O type and number of the area holding the transmission data when the TRNSO command is sent.

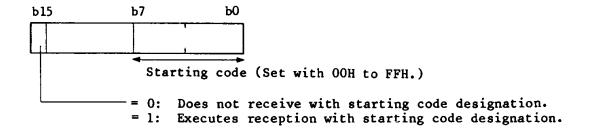
(5) Transmission data area size:

This designates the size of the transmission data area in word units.

(6) Top I/O of the reception data area:

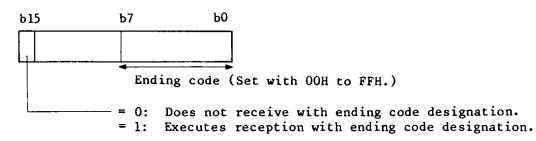
After the command and data are transmitted, this designates the top I/O type and number of the area which stores the corresponding response data. (The area configuration is the same as for transmission.)

(7) Reception data area size:


This designates the size of the reception data area in word units.

(8)*1 Reception data length:

This designates the size of reception data length in byte units. Do not, however, exceed the maximum value (256 bytes) or the reception data area. If either of these are exceeded, then DER = 1 will be true, and the process will end in an error.


(9)*1 Starting code:

This designates the code for which reception is started.

(10)^{*1} Ending code:

This designates the code to end reception.

(11) Transmission rate:

This designates the baud rate.

Baud Rate Settings

Baud rate	Setting value			
4800	H0004			
2400	H0003			
1200	H0002			
600	н0001			
300	H0000			

(12) Transmission format:

This designates the transmission format.

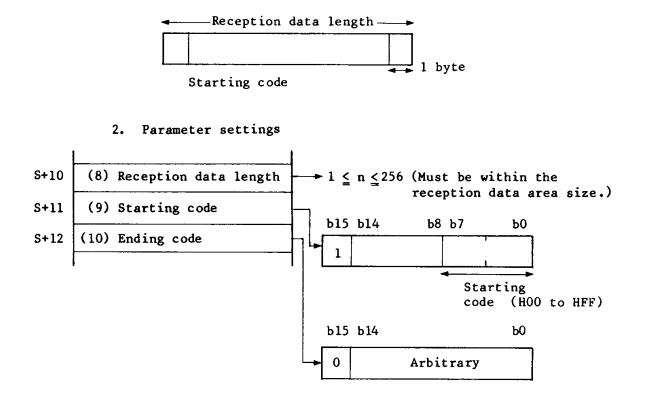
Transmission Format Settings

Transmission code	Setting value
7 bit, even parity, 2 stop bits	ноооо
7 bit, odd parity, 2 stop bits	H0001
7 bit, even parity, 1 stop bit	H0002
7 bit, odd parity, 1 stop bit	ноооз
8 bit, no parity, 2 stop bits	нооо4
8 bit, no parity, 1 stop bit	нооо5
8 bit, even parity, 1 stop bit	нооо6
8 bit, odd parity, 1 stop bit	H0007

Return code	Name	Contents	Action
ноо	Normal end	Transmission/reception has ended normally.	
н10	Module error	Watchdog timer error	Check the fixture to the CPU basic unit, turn off/on the power supply, or replace the module.
H21	Range check error	The s parameter and t parameter of the TRNS and RECV commands exceed the I/O range (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF).	Set the parameters to their correct ranges.
H22	Transmission area setting error	The setting for the top of the transmission area (type or corresponding I/O number) is not correct.	Set the top of the transmission area so that it is within the I/O range.
Н23	Transmission area range error	The bottom area of the transmission area exceeds the I/O range (WRC3FF, WL3FF, WL13FF, WM3FF).	Set the transmission area so that it fits into the I/O range.
Н24	Reception area setting error	The setting for the top of the reception area (type or corresponding I/O number) is not correct.	Set the top of the reception area, so that it is within the correct I/O range.
Н25	Reception area range error	The bottom area of the reception area exceeds the I/O range (WRC3FF, WL3FF, WL13FF, WM3FF).	Set the reception area range so that it is within the I/O range.
Н26	Transmission data length setting error	The transmission data length setting is longer than the transmission area length.	Set the transmission data length, so that it is within the transmission area range.
H27 Reception data length setting error		The reception data length is longer than the reception area length. Or, a reception area which is not as long as necessary is not secured.	Set the reception data length so that it is within the reception area range. Secure the reception area.

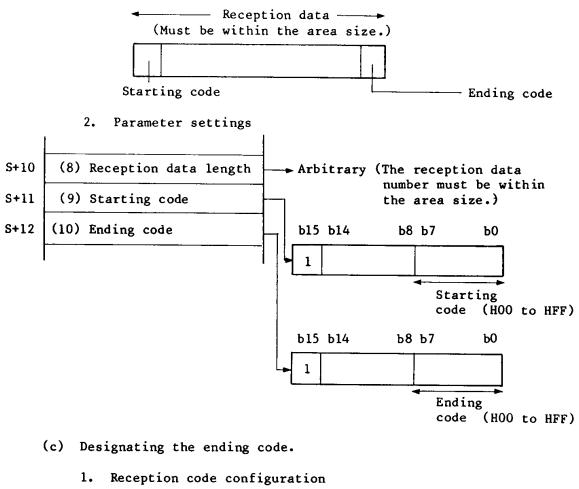
Table 1. Return Code Table

Return code	Name	Contents	Action			
H28	Area overlap error (Note)	There are overlapping areas within the s parameters, t parameters, transmission areas, or reception areas of the TRNS and RECV commands.	Set the parameters or transmission/reception areas so that they do not overlap.			
H29	l scan time out value error	The time for execution of one scan is set with the QTRNS and QRECV commands, however, the time set exceeds the maximum value (6.55 seconds).	Set the one scan time out value so that it is equal to or smaller than the maximum value.			
H2A	Control data setting error	Control data other than that specified was set and communications executed. (Generated only by TRNS3 and QTRNS3.)	Use the control data which is specified.			


.

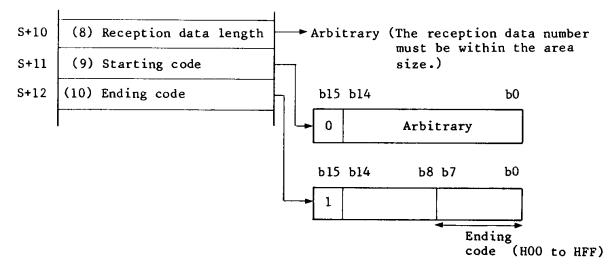
~~

Return code	Name	Contents	Action
Н30	Time out	The transmission/reception processes of the TRNS or RECV command was not completed within the specified time.	
H40	Reception area full	The reception data has filled the data area, and there is no more open area to store the next reception data.	Increase the size of the reception area.
H41	Parity error	A parity error has been generated during TRNSO and RECVO communication processing.	Check the transmission path of the general purpose serial port, data format, etc.
H42	Framing error	A framing error has been generated during TRNSO and RECVO communication processing.	
H4 3	Overrun error	A overrun error has been generated during TRNSO and RECVO communication processing.	
H44	Contention error	The TRNSO and RECVO commands have been generated simultaneously in two or more locations in the user program.	Make sure that the TRNSO and RECVO communications commands are only executed in one location in the user program.
H80	Module unique error	The high function module has received transmission data and detected an error.	Refer to the instruction manual of the module.


.

- *1. The four following methods can be designated as the data reception method.
 - (a) Designating the starting code and reception data length.
 - 1. Reception data configuration

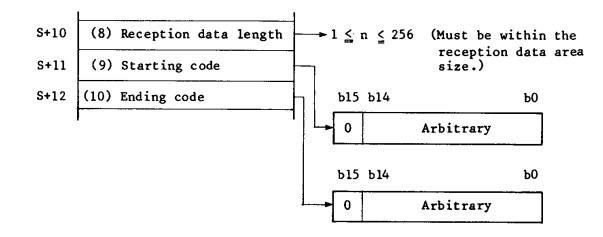
FRNS ()


(b) Designating the starting code and ending code.

1. Reception data configuration


Reception data _____ (Must be within the area size.)
Ending code

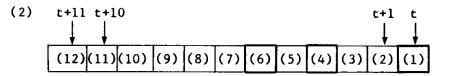
2. Parameter settings



(d) Designating the reception data length.

1. Reception data configuration

2. Parameter settings



Priority of the starting code, ending code and reception data length.

Starting code	0	1	0	1	
Ending code	0	0	1	1	
Operation	Received by the reception data length.	Received by the starting code and reception data length.	Received by the ending code.	Received by the code. Data length ignored.	

6. Description of t area

(1)

(\square : Bits set by the user.)

(1) Communication execution:

When communication is executed with the TRNSO command, the user program should set "1." When communication is ended, the TRNSO command should be reset to "0."

(2) Normal end:

When communications with the TRNSO command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

When communications with the TRNSO command ends in an error, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the TRNSO command is set to the initial state, this is set to "1," however, if an initial request is output during communication, communication will be forced to end.

(5) Initialization end:

When initialization of the TRNSO command ends normally, this bit is set to "1." At this time the initialization request (4) is reset to "0."

(6) Continue:

If reception is to follow transmission, this is set to "1." After communication is completed, the TRNSO command will reset this to "0."

(7) Parity error:

If a parity error is generated during communications, then "1" will be set.

(8) Framing error:

If a framing error is generated during communications, then "1" will be set.

(9) Overrun error:

If a overrun error is generated during communications, then "1" will be set.

(10) Time out:

When communications reaches time out, "1" will be set.

(11) Input buffer full:

When the reception buffer is full, "1" will be set.

(12) Contention error:

When the TRNSO command is activated by two or more locations in the user program, "1" will be set. Communications will be forced to end. This is the same if the TRNSO and RECVO commands are activated by two or more locations.

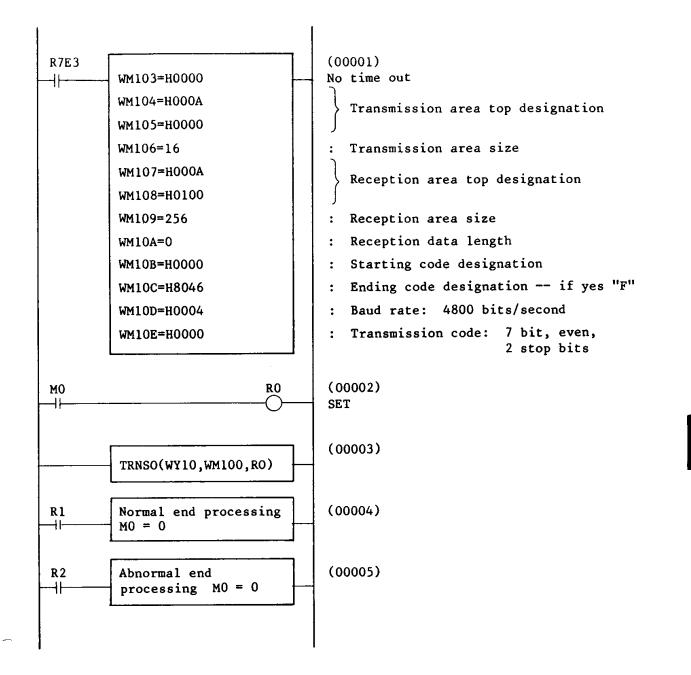
In regard to (7) through (12) above, during initialization and activation of the TRNSO command, TRNSO will reset these to "0."

Programming Example

A programming example is shown in which data is output from the CPU module through the general purpose port to external devices using the TRNSO command.

1. Module installation

		0	1	
Power supply	CPU module		32 point output	


The 32 point output module is installed in slot "1" of the basic unit. Therefore, the I/O assignment of the output module is WY10 to 11.

The d parameter of the TRNSO command must designate WY10. (The TRNSO command will use this as a dummy, so that other WYs can also be used.)

2. Internal input/output assignment

A programming example will be shown using the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

1/0	No.	Remarks	
WM	0100 to 010E	TRNSO command parameter area (s to s+14)	
R	0000 to 000B	TRNSO command communication control bit area (t to t+11)	
WR	0000 to 000F	Transmission data area (16 words)	
	0100 to 01FF	Reception data area (256 words)	
М	0000	Communication request flag (TRNSO execution)	

Program Description

- 1. Special internal output R7E3 (1 scan on) is used to set the TRNSO command parameters.
- 2. If communication request flag MO is set, then communication execution flag MO is turned on.
- 3. Communications processing is executed for the general purpose port and external device.
- 4. When the TRNSO normal end flag Rl is set, the end process starts and the communications request flag MO is cleared.
- 5. When the TRNSO abnormal end flag R2 is set, the abnormal end process starts and the communications request flag MO is cleared.

 	• • • • • •	

Name

Ladder format Condition			on code			Processin					sing	ti	me (µs)		Remarks			
RECVO (d,s,t)		R71	74	R7F	3 R7F	2 R7F1	R7F	0	H-2000							H-700/	300	
		DER	L	ERR	SD	v	С		Αv	erage		Max	imu	m	Av	erage	Maximu	m
		\$		٠	•	•	•				÷.							
Co	mmand format			No	. of st	eps				H-1	200	2				H-702/	302	
RECVO (d,s,t)		Conditions			Step			Average			Maximum		n .	Av	erage	Maximu	m	
		-				5		96			177			180		334		
				•	Bi	t			Ŵ	lord		Do	ub1	e wor	d]	
Usable I/O		X Y R,L,M M		TD,SS, MS,TMR CUR,CT	,cu,		WY	WR,WL WM	тс	DX	DY	DR,D DM	,DL Constan		Array	Other		
đ	Module instal lation locati	1						0										
S	Top of parame area	ter								0								In regard to "s," up to s + 14 is used.
t	Top of commun cations contr bit area				o													In regard to "t," up to t + 11 is used.

Function

- 1. This is the communication command for the general purpose port used by the CPU ladder program.
- 2. The top I/O No. of the parameter area is set in s, which in turn sets the various parameters (top of the transmitted/received data area and size, time out value, transmission code) used for communications.
- 3. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.
- 4. The arbitrarily mounted WX is set in d.
- 5. The RECVO command can transmit after reception.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 14 and t + 11 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

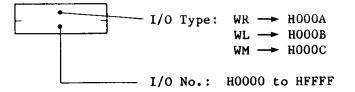
S	(1) Return code
S+1	(2) System area
S+3	(3) Time out time
S+4	(4) Top I/O of the transmission data area
S+6	(5) Transmission data area size
S+7	(6) Top I/O of the transmission data area
S+9	(7) Reception data area size
S+10	(8) Reception data length
S+11	(9) Starting code
S+12	(10) Ending code
S+13	(11) Transmission speed
S+14	(12) Transmission format

User write prohibit area

(1) Return code:

The execution results of the RECVO command are set. (Refer to TRNSO for details.) Normal end $\rightarrow 0$ Abnormal end $\rightarrow \neq 0$

(2) System area:


When the RECVO command is executed, this area is used for system processing of the RECVO command. This area cannot be used by the user.

(3) Time out time:

This sets the time out time from the top of the RECVO command execution to its completion.

= 0: No time out checking. ≠ 0: *10 ms time out check executed. (4) Top I/O of the transmission data area:

This designates top I/O type and number of the area holding the transmission data when the RECVO command is to transmit after reception of data.

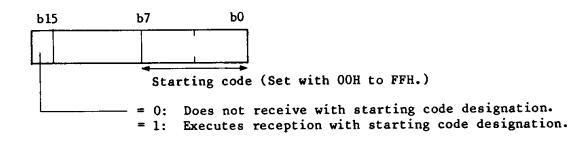
(5) Transmission data area size:

This designates the size of the transmission data area in word units.

(6) Top I/O of the reception data size:

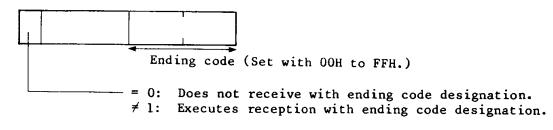
This designates the I/O type and number of the top of the area which stores the reception data. (The area configuration is the same as for transmission.)

(7)^{*1} Reception data area size:


This designates the size of the reception data area in word units.

(8)*1 Reception data length:

This designates the size of reception data length in byte units. Do not, however, exceed the maximum value (256 bytes) or the reception data area. If either of these are exceeded, then DER = 1 will be true, and the process will end in an error.


(9)^{*1} Starting code:

This designates the code for which reception is started.

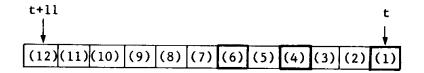
(10) Ending code:

This designates the code to end reception.

Refer to TRNSO.

(11) Transmission rate:

This designates the baud rate.


(12) Transmission format:

This designates the transmission format.

Set (4) and (5) if you wish to transmit after receiving with the RECVO command.

*1 Refer to TRNSO.

6. Description of t area

 $(\square$: Bits set by the user.)

(1) Communication execution:

When communication is executed with the RECVO command, the user program should set "1." When communication is ended, the RECVO command should be reset to "0."

(2) Normal end:

When communications with the RECVO command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

When communications with the RECVO command ends in an error, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the RECVO command is set to the initial state, this is set to "1," however, if an initial request is output during communication, communication will be forced to end.

(5) Initialization end:

When initialization of the RECVO command ends normally, this bit is set to "1." At this time the initialization request (4) is reset to "0."

(6) Continue:

If transmission is to follow reception, this is set to "1." After communication is completed, the RECVO command will reset this to "0."

(7) Parity error:

If a parity error is generated during communications, then "1" will be set.

(8) Framing error:

If a framing error is generated during communications, then "1" will be set.

(9) Overrun error:

If a overrun error is generated during communications, then "1" will be set.

(10) Time out:

When communications reaches time out, "1" will be set.

(11) Input buffer full:

When the reception buffer is full, "1" will be set.

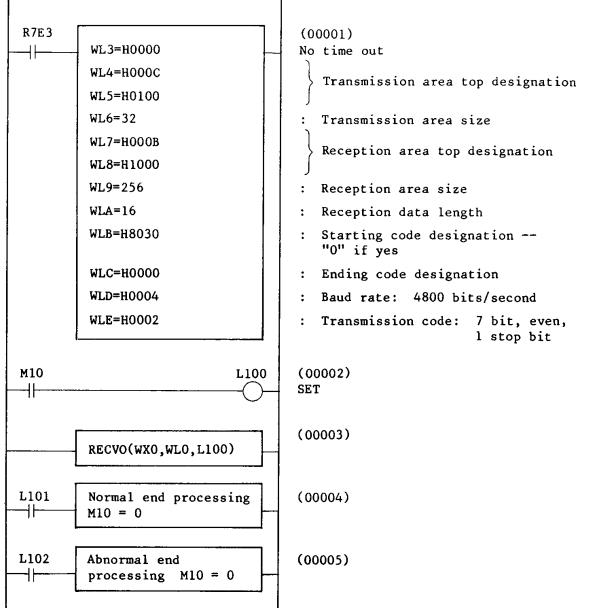
(12) Contention error:

When the RECVO command is activated by two or more locations in the user program, "1" will be set. Communications will be forced to end. In regard to (7) through (12) above, during initialization and activation of the RECVO command, RECVO will reset these to "0." Programming Example

A programming example is shown in which data is input to the CPU module through the general purpose port from external devices using the RECVO command.

1. Module installation

·	_	0	
Power supply	CPU module	32 point output	


The 32 point output module is installed in slot "O" of the basic unit. Therefore, the I/O assignment of the input module is WXO-1.

The d parameter of the RECVO command must designate WXO. (The RECVO command will use this as a dummy, so that other WXs can also be used.)

2. Internal input/output assignment

A programming example will be shown using the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

1/0	No.	Purpose	Remarks
WL	0000 to 000E	RECVO command parameter area (s to s+14)	
L	00100 to 0010B	RECVO command communication control bit area (t to t+11)	
WM	0100 to 0120	Transmission data area (32 words)	
WL	1000 to 10FF	Reception data area (256 words)	
М	0010	Communication request flag (RECVO execution)	

Program Description

- 1. Special internal output R7E3 (1 scan on) is used to set the RECVO command parameters.
- 2. If communication request flag M10 is set, then communication execution flag L100 is turned on.
- 3. Communications processing is executed for the external device and general purpose port.
- 4. When the RECVO normal end flag L101 is set, the end process starts and the communications request flag M10 is cleared.
- 5. When the RECVO abnormal end flag L102 is set, the abnormal end process starts and the communications request flag M10 is cleared.

······································		 	
	· · · · · · · · · · · · · · · · · · ·	 	

La	dder format		(Sonditi	on code						Pro	ces	sing t	ime (µs)		Remarks
	NS1 (d, s, t)	R7F4	R71	73 R7F	2 R7F1	R 7F0			H-3	200	0			H-700	/ 300	
(Q	TRNS1 (d,s,t)	DER	ERF	t SD	v	C	4	Aver	age		Max	imu	m A	verage	Maximu	m
		\$		•	•	•										
Co	mmand format		No	of s	teps				H-:	200	2			H-702	/302	
	NS1 (d, s, t)		nditi	ons	St	ер	1	Aver	age		Max	imu	m A	verage	Maximu	m
(Q	TRNS1 (d,s,t))				5))										
				В	it			Wor	d		Do	able	e word			
	Usable 1/0	1	(Y	R,L,M	TD,SS, MS,TMF CUR,CI	ι, cu, 1	wx w		R,WL M	тс	DX	DY	DR, DL DM	Constan	t Array	Other
d	Module instal lation locati						G	>								
s	Top of parame area	ter							0	i						In regard to "s," up to s + 16 is used.
t	Top of commun cations contr bit area			0												In regard to "t," up to t + 5 is used.

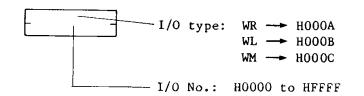
Name SIO-H, CLOCK-H (REM-MMH, LMH) communications command

Function

- This is a communication command for high function modules (serial I/O (SIO-H), the clock module (CLOCK-H), and remote mini module (REM-MMH, LMH)) and the CPU. This command is used to transmit the command and related data from the CPU, then receive the response data.
- The top I/O number of the bit area used in communications by the TRNS1 command is set in d. In regard to the installation location, the smallest number of WY for I/O assignment is designated. (Designate as WY***4.)
- 3. The top I/O No. of the parameter area is set in s (s to s+17 for QTRNS1), which in turn sets the various parameters (time out value, top of the transmission data area and size, top of the reception data area and size) used for communications.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.
- 5. The TRNS1 command will transmit data one word at a time with one scan. The QTRNS1 command will communicate data for the duration set by the parameter with one scan.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 16 and t + 5 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

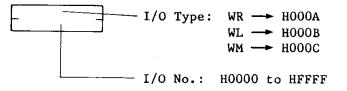

5. Description of the s area

-

S	(1) Return code
S+1	(2) Status
S+2	(3) System area - (not usable by users)
S+10	(4) Time out time
S+11	(5) Top I/O of the transmission data area
S+13	(6) Transmission data area size
S+14	(7) Top I/O of the reception data area
S+16	(8) Reception data area size
S+17	(9) Execution time TRNS1 does not use this
	: User access prohibited area : User setting area
(1)	Return code:
	The execution results of the TRNS1 command are set. Normal end $\longrightarrow 0$ Abnormal end $\longrightarrow \neq 0$ (See TRNS0 for details.)
(2)	Status:
	The contents of the status words (WX***0) of the various high function modules are set.
(3)	System area:
	When the TRNS1 command is executed, this area is used for system processing. This area cannot be used by the user.
(4)	Time out time:
	This sets the time out time from the top of the TRNS1 command execution to its completion. = 0: No time out checking. ≠ 0: *10 ms time out check executed.

(5) Top I/O of the transmission data area:

This designates top I/O type and number of the area holding the transmission data when the TRNS1 command is sent.



(6) Transmission data area size:

This designates the size of the transmission data area in word units.

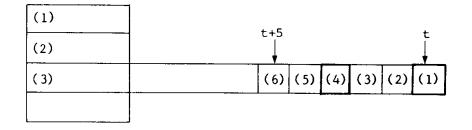
(7) Top I/O of the reception data area:

After the command and data are transmitted, this designates the top I/O type and number of the area which stores the corresponding response data.

(8) Reception data area size:

This designates the size of the reception data area in word units.

(9) Execution time:


This sets the communication time executed by one scan of the QTRNS1 command.

(*ms) If 0 is set, then the operation is the same as TRNS1.

Precaution

. The system area (3) must not be used by the user program.

6. Description of t area

(\Box : Bits set by the user.)

(1) Communication execution:

When communication is executed with the TRNS1 command, the user program should set "1." When communication is ended, the TRNS1 command should be reset to "0."

(2) Normal end:

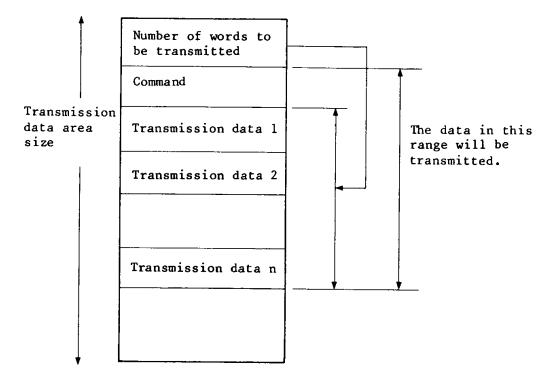
When communications with the TRNS1 command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

When communications with the TRNS1 command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the TRNS1 command is set to the initial state, this is set to "1."


(5) Initialization end:

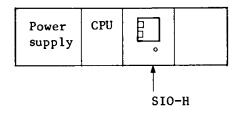
When initialization of the TRNS1 command ends normally, this bit is set to "1." At this time

(6) Module initialization request:

When the reset switch of the installed high function module is depressed and the module requests the initialization process of the CPU, "1" is set. When this bit is ON, the CPU will use the TRNS1 command to execute the initialization process (generation of the initialization command, etc.) for the module. 7. Description of the transmission data area

This is the area which stores the command and data which is transmitted by the TRNS1 command. Set the data to be transmitted in the high function module according to the following configuration.

8. Description of the reception data area


This is the area for the reception data, including the command and data, transmitted by the TRNS1 command. This is set according to the following configuration.

Number of words received	
Reception data 1	
Reception data 2	
Reception data m	

Programming Example 1

In this programming example, the serial I/O module (SIO-H) is used to output data in the CPU to an external device.

1. SIO-H Installation

SIO-H is installed in slot 0 of the basic unit. Therefore, the I/O assignment of SIO-H is WXO to 3 and WY4 to 7. Designate WY4 as the d parameter of the TRNS command.

2. Internal output assignment

The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

1/0	No.	Purpose	Rema	rks
WM	010 to 020	TRNS1 command parameter area (s to s+16)		
М	0000 to 0005	TRNS1 command communication control bit area (t to t+5)		
WR	0100 to 011F	Transmission data area (32 words)	WR0100: WR0101:	transmission data Command code
			WR0102:	Command execution data
	0200 to 021F	Reception data area (32 words)	WR0200:	reception data
			WR0201:	Reception data
R	00000	TRNS1 command initialization request		
	00001	Operation mode setting request		
	00002	Data output request		
	00100	Communications request (TRNS1 execution)		

3. Data to be passed from the CPU to SIO-H

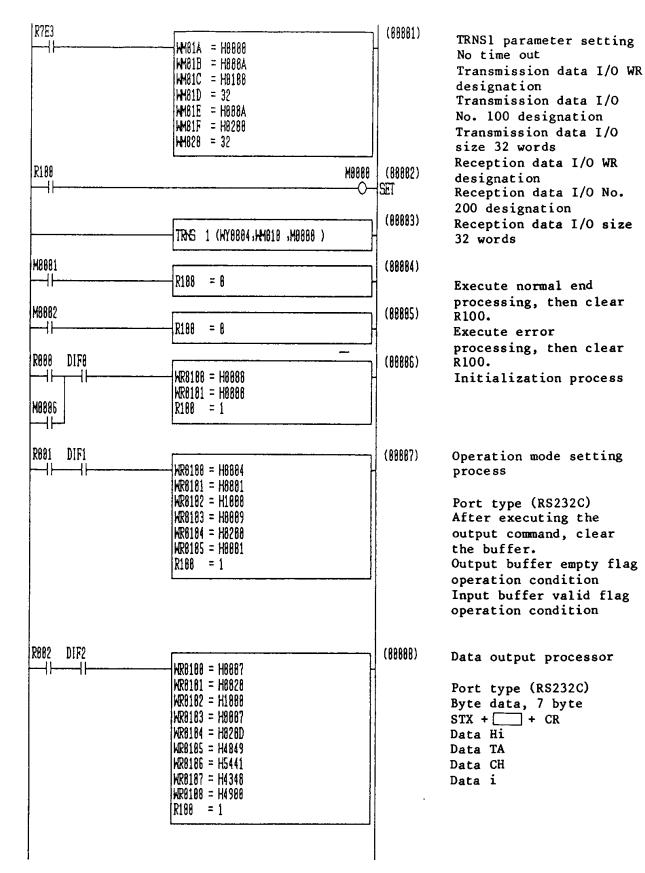
In regard to programming example 1, the command and data which are to be set in the transmission data area as the data to be passed from the CPU to SIO-H are shown below. Refer to the SIO-H manual for details.

I/O No.	Data	Contents	Remarks
WR0100	ноооо	Number of transmission data	
WR0101	ноооо	Command code	Initialization command

(a) Initialization process command and data

(b) Mode setting processor command and data

I/O No.	Data	Contents	Remarks
WR0100	нооо4	Number of transmission data	
WR0101	нооо1	Command code	
WR0102	н1000	Port type, time out	RS232C/no time out setting
WR0103	H0008	Mode setting	After executing the output command, clear the buffer.
WR0104	H0200	Output buffer empty flag operation condition	Controlled by the buffer empty byte number (H0200)
WR0105	H0001	Input buffer valid flag operation condition	Controlled by the received message length


I/O No.	Data	Contents	Remarks
WR0100	нооо7	Number of transmission data	
WR0101	ноо20	Command code	
WR0102	н1000	Port type, time out	
WR0103	H0007	Data type, data length	Byte data, 7 byte
WR0104	H020D	Message configuration	STX + data + CR configuration
WR0105	н4849	Data (ASCII)	"H", "I"
WR0106	н5451	ļ	"T", "A"
WR0107	H4348	· · · · · · · · · · · · · · · · · · ·	"С", "Н"
WR0108	н4900	<u> </u>	"I"

(c) Output processor command and data to the output buffer

•

~

Program Description 1

- Use special internal output R7E3 (1 scan on) to set the TRNS1 command parameters (no time out check, transmission area 32 words from WR100, reception 32 words from WR200) in the first scan after starting operation.
- 2. When the communications start condition R100 is set, communication execution flag MO is turned on, and the TRNS1 command is executed.
- 3. Communications processing is executed for the serial I/O module.
- 4. When the normal end flag Ml is set, normal end processing is executed and the communication start condition R100 is cleared.
- 5. When the abnormal end flag M2 is set, abnormal end processing is executed and the communication start condition R100 is cleared.
- 6. When the initialization start condition RO is set, the initialization command of the serial I/O module is set in the transmission data area, and the communication start condition R100 is turned on.
- 7. When the operation mode setting condition Rl is set, the operation mode setting command of the serial I/O module and the data are set in the transmission data area, then communication start condition R100 is turned on.
- 8. When data output condition R2 is set, the data output command of the serial I/O module and the data are set in the transmission data area, then communication start condition R100 is turned on.

Programming Example 2

In this programming example, the real time clock module (CLOCK-H) is used to set the clock data and read it.

1. CLOCK-H installation

CLOCK-H is installed in slot 2 of the basic unit. Therefore, the I/O assignment of CLOCK-H is WX20 to 23 and WY24 to 27. Designate WY24 as the d parameter of the TRNS1 command.

2. Internal output assignment

The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

1/0	No.	Purpose	I	Remarks
WM	030, 031	Hour, minute, and second data		· · · · · · · · · · · · · · · · · · ·
	110 to 120	TRNS1 command parameter area (s to s+16)		
М	1000 to 1005	TRNS1 command communication control bit area (t to t+5)		
WR	0300 to 030F	Transmission data area (16 words)	WR0100: WR0101: WR0102:	transmission data
	0400 to 040F	Reception data area (16 words)	WR0200: WR0201:	Number of reception data Reception data
R	00010	Clock data write		
	00011	Clock data read		
	00110	Communication request (TRNS1 execution)		

3. Data to be passed from the CPU to SIO-H

In regard to programming example 1, the command and data which are to be set in the transmission data area as the data to be passed from the CPU to CLOCK-H are shown below.

(a) Clock data write

1/0 No.	Data	Contents	Remarks
WR0300	нооо2	Number of transmission data	
WR0301	ноо1о	Command code	Clock data setting command
WR0302	WM030	Hour and minute data	
WR0303	WM031	Second data	

(b) Clock data read

1/0 No.	Data	Contents	Remarks
WR0300	ноооо	Number of transmission data	
WR0301	H0020	Command code	Clock data read command

The clock data which is read is set in WR401 and WR402.

WR400	ноо	02
WR401	Hour	Minute
WR402	Second	00

MM11A = H8886 MM11B = H888A MM11C = H8388 MM11E = H888A MM11F = H888A MM11F = H8488 M18	(88882) Set (88883) (88884)
HM11C = H0308 HM11D = 16 HM11E = H080A HM11F = H0408 HM128 = 16 M1808 O TRNS 1 (HY0024, HM118, M1808)	SET (88883)
HM11E = H888A HM11F = H8488 HM128 = 16 M1888 (H1888)	SET (88883)
HM11F = H8488 HM128 = 16 M1888 TRNS 1 (HY8824, HM118 , M1888)	SET (88883)
HM128 = 16 M1888 TRNS 1 (HY8824, HM118, M1888)	SET (88883)
M1808	SET (88883)
	SET (88883)
TRNS 1 (HY8824, HM118 , M1888)	(08883)
	(88884)
	(88884)
	(88885)
	(00005)
{HR8368 = H8862	(000007
WR0838 = H8010	
[]	(0888?)

TRNS1 parameter setting No time out Transmission data I/O WR designation Transmission data I/O No. 300 designation Transmission data I/O size 16 words Reception data I/O WR designation Reception data I/O No. 400 designation Reception data I/O size 16 words

Normal end processing is executed, then R110 is cleared. Error processing is executed, then R110 is cleared. Clock write

Clock read

Program Description 1

- Use special internal output R7E3 (1 scan on) to set the TRNS1 command parameters (no time out check, transmission area 16 words from WR300, reception 16 words from WR400) in the first scan after starting operation.
- 2. When the communications start condition R110 is set, communication execution flag M1000 is turned on, and the TRNS1 command is executed.
- 3. Communications processing is executed for the real time clock module.
- 4. When the normal end flag M1001 is set, normal end processing is executed and the communication start condition R110 is cleared.
- 5. When the abnormal end flag M1002 is set, abnormal end processing is executed and the communication start condition R110 is cleared.
- 6. When the clock data write conditions (R10) are set, the hour, minute and second data set in WM30 and WM31 are set in the transmission data area, and the communication start condition with the real time clock module R110 is turned on.
- 7. When the clock data read condition (R11) is set, the clock data read command of the real time clock module is set in the transmission data area, and the communication start condition R110 is turned on. The read hour, minute and second data are written in WR401 and WR402.

Name ASCII module communication command

Ladder format			С	onditio	on code		1				Pro	ces	sing t	ime (µs)			Remarks
TRNS2 (d,s,t)	R71	F4	R7F	3 R7F2	2 R7F1	R7FC	>		H-	200	0			H-700	/ 300		
(QTRNS2 (d,s,t)	DEI	R	ERR	SD	v	С		Av	erage		Max	imu	m A	verage	Maximu	m	
	ŧ		•	•	•	•					-						
Command format			No	. of st	eps				H-:	200	2			H−702	/ 302		
TRNS2 (d,s,t) (QTRNS2 (d,s,t)		Cond	liti	ons	St	ep		Av	erage	1	Max	imu	10 A	verage	Maximu	m	
					5						850 (4710)				1420 (5910)		
				Bi	t			W	ord		Do	ublo	e word				
Usable I/O		x	Y	R,L,M	TD,SS,WDT, MS,TMR,CU, W CUR,CT		WX	X WY WR, WI		TC	DX DY		DR, DL DM	Constan	t Array		Other
d Module insta lation locat								0									
s Top of parama area	eter								o								regard to "s," up s + 20 is used.
t Top of communications cont bit area		h		0								<u> </u>				In to	regard to "t," up t + 5 is used.

Function

- 1. This is the communication command used between the high function module (ASCII-1H, 2H) and the CPU.
- In parameter d, the smallest WY is designated for the installation location I/O assignment WY of ASCII-1H, 2H with which the TRNS2 (QTRNS2) command will communicate. (Designate WY***4.)
- 3. The top I/O numbers of the parameter areas for the various parameters (time out data, top I/O numbers and sizes of transmission/reception data areas, Tms counter data) for communication are set in s.
- 4. The control bit which starts and initializes communications and clears errors, and top I/O No. of the communication control bit area in which the results of communications are set in t.
- 5. The TRNS2 command sends data one word per one scan. The QTRNS2 command sends the period data of time set by the parameters in one scan.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 21 and t + 5 so that they do not exceed the I/O range (R7FF, L03FF, L13FF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

0	
S	(1) Return code
S+1	(2) Status
S+2	(3) System area
S+14	(4) Time out time
S+15	(5) Top I/O of the transmission data area
S+17	(6) Transmission data area size
S+18	(7) Top I/O of the reception data area
S+20	(8) Reception data area size
S+21	(9) 1 scan execution time

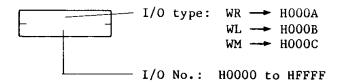
TRNS2 does not use this.

(1) Return code:

The execution results of the TRNS2 command are set. Normal end $\longrightarrow 0$ Abnormal end $\longrightarrow \neq 0$ (See TRNS0 for details.)

(2) Status:

The contents of the status words (WX***0) of ASCII-1H, 2H are set.

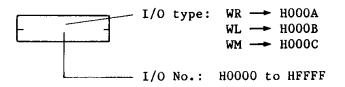

(3) System area:

When the TRNS2 (QTRNS2) command is executed, this area is used for system processing. This area cannot be used by the user.

(4) Time out time:

This sets the time out time from the top of the TRNS2 (QTRNS2) command execution to its completion. = 0: No time out checking. ≠ 0: *10 ms time out check executed. (5) Top I/O of the transmission data area:

This designates top I/O type and number of the area holding the transmission data when the TRNS2 (QTRNS2) command is sent.

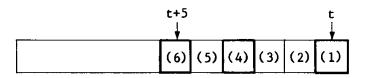


(6) Transmission data area size:

This designates the size of the transmission data area in word units.

(7) Top I/O of the reception data area:

This designates the top I/O type and number of the area which stores the data to be received by TRNS2 (QTRNS2).


(8) Reception data area size:

This designates the size of the reception data area in word units.

(9) 1 scan execution time: (*ms)

This sets the communication time when one scan of QTRNS2 is executed. If 0 is set, then the operation will be the same as that for TRNS2.

6. Description of the t area

(1) Communication execution:

When communication is executed with the TRNS2 (QTRNS2) command, the user program should set "1." When communication is ended, the TRNS2 (QTRNS2) command should be reset to "0."

(2) Normal end:

When communications with the TRNS2 (QTRNS2) command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

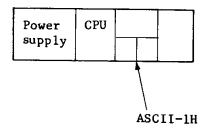
When communications with the TRNS2 (QTRNS2) command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the TRNS2 (QTRNS2) command is set to the initial state, this is set to "1." If initialization ends normally, this is reset to "0."

(5) Initialization end:

When initialization of the TRNS2 (QTRNS2) command ends normally, this bit is set to "1." The initialization request, (4) will be reset to "0."

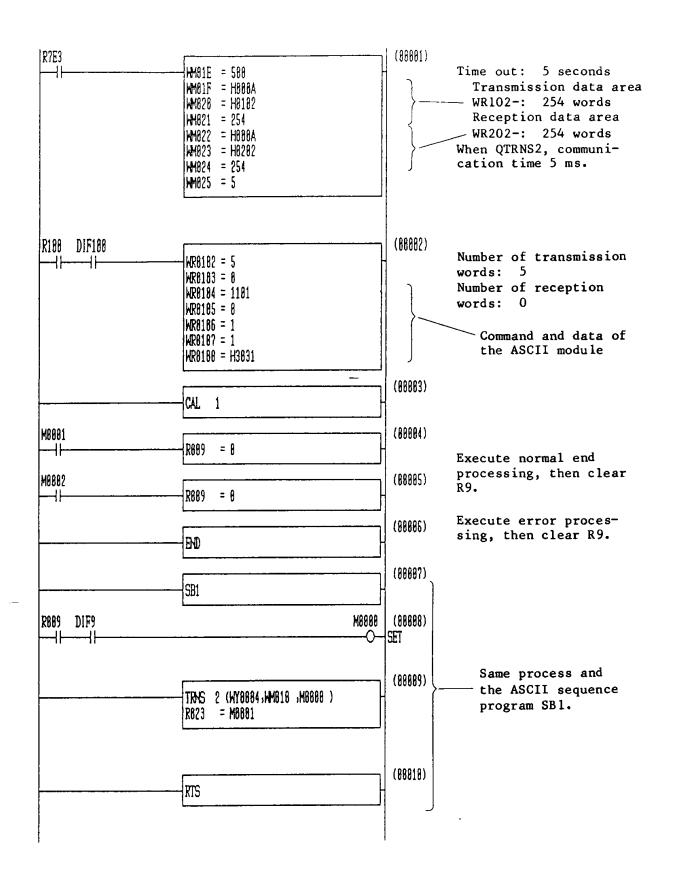

(6) Error clear request:

In order to clear errors generated by the TRNS2 (QTRNS2) command, set this to "1."

Programming Example

An example of transmitting data with the ASCII module is shown below. The parameters are set so that SBI in this program can be replaced with SBI in the ASCII module sequence program.

ASCII-1H is set in slots 0 and 1 of the basic unit. (This is because this module has a two slot width.) Therefore, the I/O assignments for ASCII-1H are WX10-WX13 and WY14-WY17.


WY14 is designated for the d parameter of TRNS2 (QTRNS2).

(1) Internal output assignment

The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

I/0	No.	Purpose	Remarks
W/M	010 to 025	TRNS2 (QTRNS2) command parameter area (s to s+21)	
М	0000 to 0005	TRNS2 (QTRNS2) command communication control bit area (t to t+5)	
WR	0102 to 01FF	Transmission data area (254 words)	This program does not use FIFO, so that WR0100 and WR0101 of SB1 are not necessary. In order to match SB1, WR0102- is used.
	0202 to 021F	Reception data area (254 words)	This program does not use FIFO, so that WR0200 and WR0201 of SB1 are not necessary. In order to match SB1, WR0202- is used.
R	0009	Transmission start flag	
	0023	Transmission end flag	

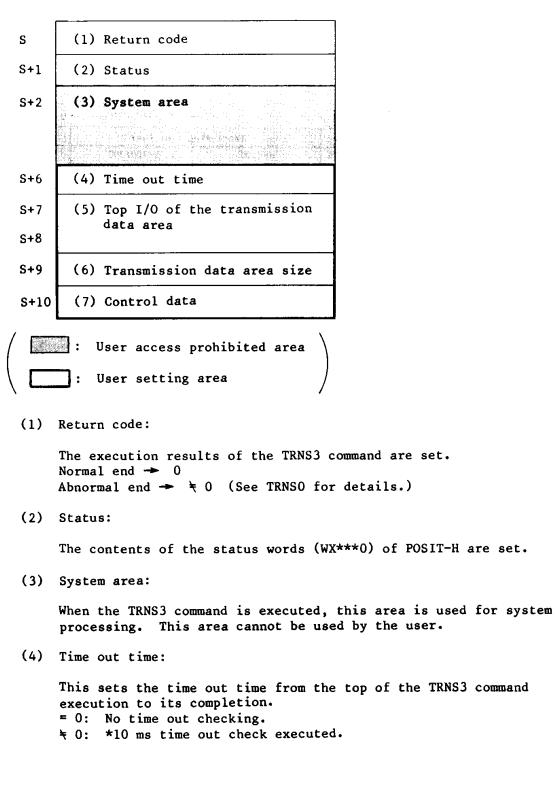
TRNS 2 QTRNS 2

Program Description

- 1. Use the special internal output R7E3 (1 scan on) to set the TRNS2 command parameters.
- 2. The data to be sent to the ASCII module is set in the transmission data area with R100.
- 3. Call the subroutine of the TRNS2 command.
- 4. When the normal end flag M1 is set, the normal end process will be executed, and the communication start flag R9 will be cleared.
- 5. When the error end flag M2 is set, the error process will be executed, and the communication start flag R9 will be cleared.
- 6. End of program.
- 7. Start subroutine.
- 8. The communication start flag of R9 is used to turn on the communication execution flag MO.
- 9. Communication processing is executed.
- 10. End of subroutine.

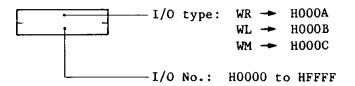
Name

La	dder format			c	onditi	on cod	e					Pro	ces	sing	t	ime (µs)		Remarks
TR	NS3 (d,s,t)	R7F	-4	R7F	3 R7F	2 R7F	L R7E	0		H-	200	0				H-700	/ 300	
		DER		ERR	SD	v	С		Av	erage	I	Max	imu	m	٨	verage	Maxim	im
		1		•	•	•	•				+							
Co	mmand format		4.	No	. of s	teps	•		-	H-	200	2				li-702	/ 302	
TR	NS3 (d,s,t)	C	Cond	liti	ons		Step		Av	erage		Max	imu	m.	A	verage	Maxim	im .
				-			5											
		l			B	it			h	lord		Do	ub1	e wor	٢đ			
	Usable I/O		x	Y	R,L,M		S,WDT, 1R,CU, CT		WY	WR,WL WM	тc	DX	DY	DR, T DM)L	Constan	Array	Other
d	Module insta lation locat								0									······································
s	Top of parame area	eter								o								In regard to "s," up to s + 10 is used.
t	Top of communications cont				0													In regard to "t," up to t + 4 is used.


Function

- 1. This command is used between the one axis positioning module (POSIT-H) and the CPU. This command is used to send the command and data to the CPU, then receive the response data.
- The smallest WY number of the I/O assignment WY for the installation location of POSIT-H which communicates with the TRNS3 command is set in d. (Designate WY***4.)
- 3. The top I/O number of the parameter area which sets the various parameters (time out value, top I/O number and size of the transmission data area, control data) for communications is set in s.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.

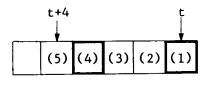
Precautions


- Array variables cannot be used in d, s and t.
- . Use s + 10 and t + 4, so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

(5) Top I/O of the transmission data area:

This designates top I/O type and number of the area holding the transmission data when the TRNS3 command is sent.


(6) Transmission data area size:

This designates the size of the transmission data area in word units.

(7) Control data:

This is set according to the table on the next depending on the contents to be communicated.

MSB									LSB					
15 14 13 1	2 11	10 9	8	76	5	4	3	2 1	0					
							~					0: 0	DFF 1: ON	
		Bi	t					Co	ntent	s/def	finiti	ons		
			to 5											
		0		is 1	7 w		. 1	When					The maximum ster is to be	
	Ьі	.t 6,	7	Not	use	d. 8	Set	thi	s to	0.				
	bi	t 8,	9		of	tes t the					Bi	.t		
					1e.						9	8	Mode	
											0	0	Wait	
											0		Manual Automatic	
											1	1	Zero return	
	bi	t 10		Operation bit. Start operation = 1. Pause = 0. The module will operate according to the leading edge and trailing edge of this bit. Once pause is executed the module will pause and will not accept operation input until it enters the standby status.										
	bi	t 11		Synci synci MS an	hron hron nd S	nous nous SL si	= 1 and gna	. 1 lasy lls.	his nchr Be	deter onous sure	mines oper to se	the ation t the	ronous = 0. mode for through the asynchronous t used.	
	bi	t 12		= 1. the t	Thi mast is	s se er a used	ts xis , h	whet or	her slav	the p e axi	ositi s. I	oning f the	Master axis module is for asynchronous es not have to	
	bi	t 13			on p	aram	ete	rs =	1.		ositi the		data = 0. of	
	- bi	t 14		Not u	used	. s	et	this	to	0.				
	bi	t 15			, th	e mo							is bit is set se row output	

(\square : Bits set by the user.)

(1) Communication execution:

When communication is executed with the TRNS3 command, the user program should set "1." When communication is ended, the TRNS3 command should be reset to "0."

(2) Normal end:

When communications with the TRNS3 command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

When communications with the TRNS3 command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the TRNS3 command is set to the initial state, this is set to "1." (This is not initialization of the high function module.) When initialization ends normally, this is reset to "0."

(5) Initialization end:

When initialization of the TRNS3 command ends normally, this bit is set to "1." At this time, the initialization request (4) will be reset to "0."

 	 	· · · · · · · · · · · · · · · · · · ·		
			•••••••••••••••••••••••••••••••••••••••	
				······································
	 		· · · · · · · · · · · · · · · · ·	

Name

La	dder format			c	onditio	on code						Pro	ces	sing	ti	ime (µs)		Remarks	
RE	CV3 (d,s,t)	R71	F4	R7F	3 R7F	2 R7F1	R7F1 R7F0			11-1	200	0				H-700/	300		
		DEF	2	ERR	SD	V	C		Aν	erage		Max	imu	m	A١	verage	Maximu	m	
		‡		•	•	•	•				-			_					
Co	ommand format No. of s					eps			H-3	200	2		-		H-702/	302			
RE	CV3 (d,s,t)	(Cond	iti	ons	St	ep		Av	erage		Max	เตนา	ra.	A١	verage	Maximu	៣	
					5			102			160			190		300			
	Bi				t			Word			Double wo			d					
Usable I/O			x	Y	R,L,M	TD,SS, MS,TMR CUR,CT	,cu,		WY	WR,WL WM	TC	DX	DY	DR,D DM	L	Constant	Array	Other	
·d	Module instal lation locati								0										
S	Top of parame area	ter								o								In regard to "s," to s + 5 is used.	up
t	Top of commun cations contr bit area				o													In regard to "t," to t + 4 is used.	up

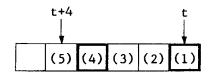
Function

- 1. This command is used between the one axis positioning module (POSIT-H) and the CPU. This command is used to receive position data indicated by the module.
- The smallest WX number of the I/O assignment WX for the installation location of POSIT-H which communicates with the RECV3 command is set in d. (Designate WX***0.)
- 3. The top I/O number of the parameter area which sets the various parameters (time out value, top I/O number and size of the reception data area, control data) for communications is set in s.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 5 and t + 4 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area


s	(1) Return code	
S+1	(2) Status	
S+2	(3) Time out time	
S+3	(4) Top I/O of the reception data area	
S+4		
S+5	(5) Reception data area size	
•	(🔲 : User setting area)	
(1)	Return code:	
	The execution results of the RE Normal end $\rightarrow 0$ Abnormal end $\rightarrow \mp 0$ (See TRNS	
(2)	Status:	
	The contents of the status word	s (WX***0) of POSIT-H are set.
(3)	Time out time:	
	This sets the time out time from execution to its completion. = 0: No time out checking. \to 0: *10 ms time out check exe	
(4)	Top I/O of the reception data a	rea:
	This designates top I/O type an reception data when the RECV3 c	d number of the area holding the ommand used.
	I/O Typ I/O Typ	WL> HOOOB WM> HOOOC

(5) Reception data area size:

This designates the size of the reception data area in word units.

.

6. Description of the t area

(🔲 : Bits set by the user.)

(1) Communication execution:

When communication is executed with the RECV3 command, the user program should set "1." When communication is ended, the RECV3 command should be reset to "0."

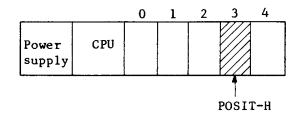
(2) Normal end:

When communications with the RECV3 command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

When communications with the RECV3 command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

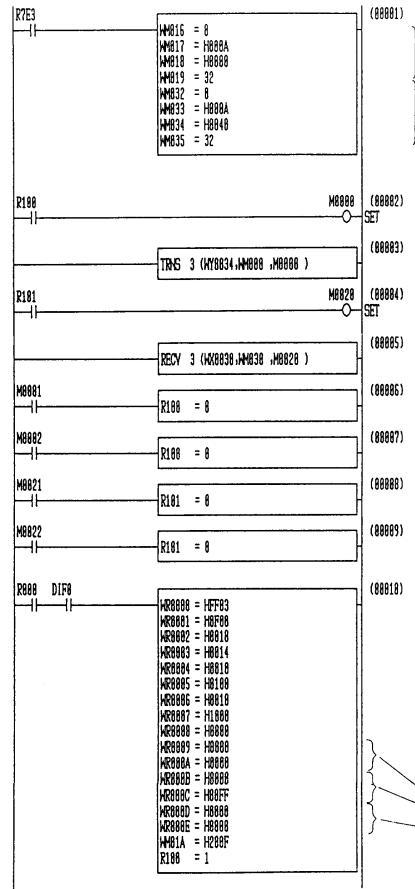

When the RECV3 command is set to the initial state, this is set to "1." (This is not initialization of the high function module.) When initialization ends normally, this is reset to "0."

(5) Initialization end:

When initialization of the RECV3 command ends normally, this bit is set to "1." At this time, the initialization request (4) will be reset to "0." Programming Example

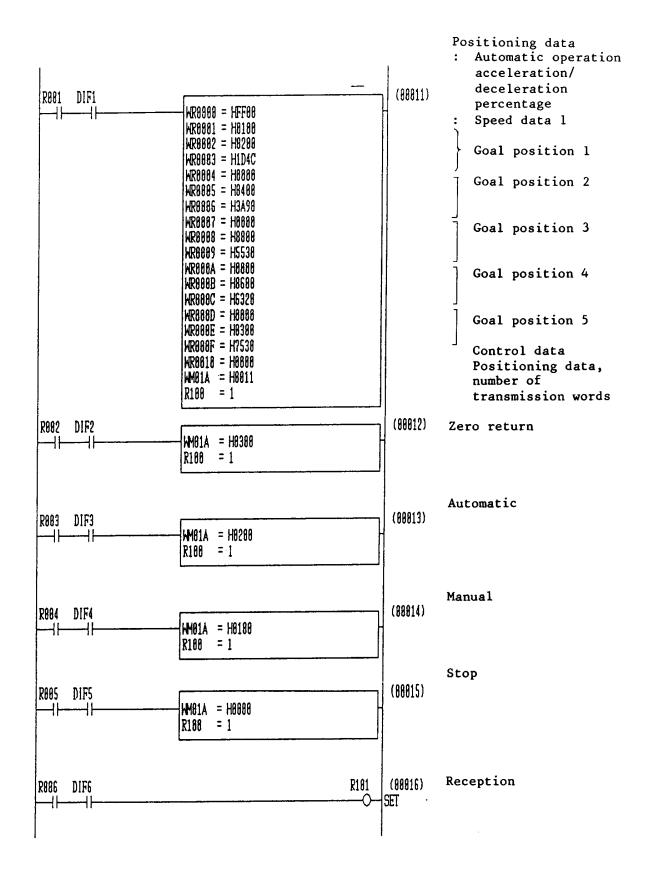
This is a programming example in which a one axis positioning module (POSIT-H) is used, and goes from initialization to operation.

1. POSIT-H installation


POSIT-H is installed in slot three of the basic unit. Therefore, the I/O assignments for POSIT-H are WX30 to WX33 and WY34 to WY37. WY34 is designated for the d parameter of TRNS3, and WX30 is designated for the d parameter of RECV3.

(2) Internal output assignment

The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.


I/0	No.	Purpose	Remarks
WM	010 to 01A	TRNS3 command parameter area (s to s+10)	
М	0000 to 0004	TRNS3 command communication control bit area (t to t+4)	
WR	0000 to 0020	TRNS3 command transmission data area (32 words)	
WM	030 to 035	RECV3 command parameter area (s to s+5)	
М	0020 to 0024	RECV3 command communication control bit area (t to t+4)	
WR	0040 to 0050	RECV3 command reception data area (32 words)	
R	00000	Common parameter transmission	
	00001	Positioning data transmission	
	00002	Zero return request flag	
	00003	Automatic operation request flag	
	00004	Manual operation request flag	
	00005	Stop request flag	
	00006	Receive request flag	
	00100	TRNS3 activation flag	
	00101	RECV3 activation flag	······

•

TRNS3 and RECV3 parameter setting No time out Transmission data area WRO-: 32 words No time out Reception data area WR40-: 32 words

- TRNS3 normal end processing Communication start R100 flag clear TRNS3 error processing Communication start R100 flag clear RECV3 normal end processing Communication start R100 flag clear RECV3 error processing Communication start R100 flag clear Common parameters Maximum speed : Manual starting speed : Manual speed : Automatic starting : speed High speed zero • return speed Low speed zero return : speed Acceleration/ •
 - deceleration percentage Backlash compensation Upper limit Lower limit Zero point
 - Control data Common parameters, number of transmission words.

Program Description

- Special internal output R7E3 (one scan on) is used to set the TRNS3 and RECV3 parameters.
- 2. When the communication start condition R100 is set, the communication execution flag M0 is turned on.
- 3. Communication processing (transmission) is executed for the one axis positioning module installed in slot 3 of the basic unit.
- 4. When communication start condition R101 is set, the communication execution flag M20 is turned on.
- 5. Communication processing (reception) is executed for the one axis positioning module installed in slot 3 of the basic unit.
- 6. When the normal end (TRNS3) flag Ml is set, normal end processing is executed and the communication start condition R100 is cleared.
- 7. When the abnormal end (TRNS3) flag M2 is set, abnormal end processing is executed and the communication start condition R100 is cleared.
- 8. When the normal end (RECV3) flag M21 is set, normal end processing is executed and the communication start condition R101 is cleared.
- 9. When the abnormal end (RECV3) flag M22 is set, abnormal end processing is executed and the communication start condition R101 is cleared.

RECV

- 10. When the common parameter setting condition RO is set, the common parameters, transmission data address, data length, and control data are set, and the communication start condition R100 is turned on.
- 11. When the positioning data setting condition Rl is set, the positioning data, transmission data address, data length, and control data are set, and the communication start condition R100 is turned on.
- 12. When zero return condition R2 is set, the control data is set, and the communication start condition R100 is turned on.
- 13. When the automatic operation condition R3 is set, the control data is set, and the communication start condition R100 is turned on.
- 14. When the manual operation condition R4 is set, the control data is set, and the communication start condition R100 is turned on.
- 15. When the stop condition R5 is set, the control data is set, and the communication start condition R100 is turned on.
- 16. When the reception condition R6 is set, the reception area address and data length are set, and the communication start condition R101 is turned on.

Name

La	idder format			С	onditio	on code						Pro	ces	sing (ime (µs)		Remarks
QT	RNS3 (d,s,t)	R71	F4	R7F	3 R7F2	2 R7F1	R7F	0		H-	200	0			H-70	0/	300	
		DE	R	ERR	ŚD	v	C		Aν	erage		Max	imu	m 1	verage	Т	Maximu	im i
				•	•	•	•				-			_		Ţ		
Co	ommand format			No	of st	eps				H-	200	2		-	11-70	2/	302	
Q	CRNS3 (d,s,t)	0	Cond	liti	ons	St	ep		٨v	erage		Max	imu	m A	verage		Maximu	π
				-		5				2620		52	00		3314		6550	
!				+	Bi	.t			W	ord		Do	ubl	e word	1			
	Usable I/O		x	Y	R,L,M	TD,SS, MS,TMR CUR,CT	,cu,		wy	WR,WL WM	тC	DX	DY	DR, DL DM	Consta	nt	Array	Other
d	Module instal lation locati		_						0		·							
s	Top of parame area	ter								0								In regard to "s," up to s + 13 is used.
t	Top of commun cations contr bit area				0													In regard to "t," up to t + 4 is used.

Function

- 1. This command is used between the one axis positioning module (POSIT-H) and the CPU. This command is used to send the command and data to the CPU, then receive the response data.
- The smallest WY number of the I/O assignment WY for the installation location of POSIT-H which communicates with the QTRNS3 command is set in d. (Designate WY***4.)
- 3. The top I/O number of the parameter area which sets the various parameters (time out value, scan time out value, transmission area top I/O number and size, control data) for communications is set in s.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.
- 5. The QTRNS3 command will communicate data for the time designated by the parameters for one scan.

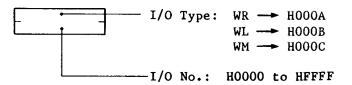
Precautions

- . Array variables cannot be used in d, s and t.
- Use s + 13 and t + 4 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

~

<pre>(1) Return code (2) Status (3) System area</pre>	
(3) System area	
(3) System area	
(4) Time out time	
(5) 1 scan execution time	
(6) Top I/O of the transmission	
data area	
(7) Transmission data area size	
(8) Control data	
: User access prohibited area	
The execution results of the TRNS3 c Normal end $\rightarrow 0$ Abnormal end $\rightarrow \neq 0$ (See TRNS0 for	
Status:	
The contents of the status words (WX	***0) of POSIT-H are set.
System area:	
When the TRNS3 command is executed, processing. This area cannot be use	
Time out time:	
This sets the time out time from the execution to its completion. = 0: No time out checking. ≒ 0: *10 ms time out check executed	
	 (5) 1 scan execution time (6) Top I/O of the transmission data area (7) Transmission data area size (8) Control data (8) Control data (9) Control data (1) User access prohibited area (1) User setting area (1) User setting area (1) User setting area (2) Return code: The execution results of the TRNS3 constant end → 0 Abnormal end → 0 Abnormal end → 1 (1) (See TRNS0 for Status: The contents of the status words (WX System area: When the TRNS3 command is executed, processing. This area cannot be use Time out time: This sets the time out time from the execution to its completion. (1) No time out checking.


QTRNS (

(5) 1 scan execution time:

Sets the time executed during one scan.
= 0: Invalid (Executed in the same manner as TRNS3.)
\ 0: For a *ms period, executes QTRNS processing.

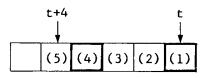
(6) Top I/O of the transmission data area:

This designates top I/O type and number of the area holding the transmission data when the TRNS3 command is sent.

(7) Transmission data area size:

This designates the size of the transmission data area in word units.

(8) Control data:


This is set according to the table on the next depending on the contents to be communicated.

MS	В]	LS B	5								
15	14	13	1	2 1	.1 10	9	8	7	6	5	4	3	3 2	2 1	1	0									
					\square		~					_													
					\leq															0:	OFF	1	:	ON	
						Bi	t							Co	on	ten	its	/de:	finiti	ons					
					bit	0	to !	i	rit s l rit	7 w	ord	ls.	. 1	her					to be ontrol			ne m r is			
					bit	6,	7	N	lot	use	d.	S	Set	thi	is	to	0	•							
					bit 8, 9 Designates the operation mode of the positioning Bit																				
									odu			IC.	poa	510			-6		9	8		Mod	e		
																			0	0	Wa	ait			
																			0	1	Ma	anua	1.	•	
																			1	0	Αι	utom	ati	c	
																			1	1	Ze	ero	ret	urn	i
					bit	10		T e e	he dge xec	mod an ute	ule d t d t	e w ra	vil] aili e mo	l op ing odul	e e le	rat dge wi	e o .11	acco f tl pau	tion = ording nis bi use ar ters t	to t. d wi	the 1 Once 11 no	lead pau ot a	ing se cce	is pt	
					bit	11		S S M	ync ync IS a	hro hro nd	nou nou SL	ıs ıs si	=] and igna	l. d as als	Ti syi	his nch Be	d aro e s	nou: ure	le. A rmines s open to se nals a	the ations t the	on thi ne asy	e fo roug ynch	r h t	he	
					bit	12		Master/slave setting. Slave axis = 0. Master axis = 1. This sets whether the positioning module is for the master axis or slave axis. If the asynchronous mode is used, however, this setting does not have to be specified.																	
			-	·	bit	13		0		on	par	can	nete	ers	=	1.			Positi s the			ta =	0.		
	L				bit	14		N	lot	use	d.	S	Set	thi	is	to	o	•							
					bit	15		t		, t	he	mo							l. Wł opped.						

 \sim

QTRNS 3

6. Description of the t area

(🔲 : Bits set by the user.)

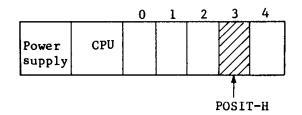
(1) Communication execution:

When communication is executed with the QTRNS3 command, the user program should set "1." When communication is ended, the QTRNS3 command should be reset to "0."

(2) Normal end:

When communications with the QTRNS3 command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

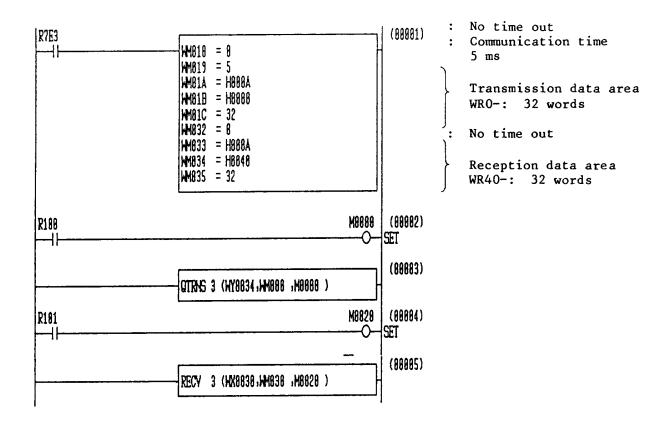

When communications with the QTRNS3 command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

- (4) Initialization request: When the QTRNS3 command is set to the initial state, this is set to "1." (This is not initialization of the high function module.) When initialization ends normally, this is reset to "0."
- (5) Initialization end:

When initialization of the QTRNS3 command ends normally, this bit is set to "1." At this time, the initialization request (4) will be reset to "0."

This is a programming example in which a one axis positioning module (POSIT-H) is used, and goes from initialization to operation.

1. POSIT-H installation


POSIT-H is installed in slot three of the basic unit. Therefore, the I/O assignments for POSIT-H are WX30 to WX33 and WY34 to WY37. WY34 is designated for the d parameter of QTRNS3, and WX30 is designated for the d parameter of RECV3.

(2) Internal output assignment

The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

1/0	No.	Purpose	Remarks
WM	010 to 01D	QTRNS3 command parameter area (s to s+13)	
М	0000 to 0004	QTRNS3 command communication control bit area (t to t+4)	
WR	0000 to 0020	QTRNS3 command transmission data area (32 words)	
WM	030 to 035	RECV3 command parameter area (s to s+5)	
М	0020 to 0024	RECV3 command communication control bit area (t to t+4)	
WR	0040 ±0 0050	RECV3 command reception data area (32 words)	
R	00000	Common parameter transmission	
	00001	Positioning data transmission	
	00002	Zero return request flag	
	00003	Automatic operation request flag	
	00004	Manual operation request flag	
	00005	Stop request flag	
	00006	Receive request flag	
	00100	QTRNS3 activation flag	
	00101	RECV3 activation flag	

.

The remainder of the program is the same as that for TRNS3.

Program Description

. Refer to the program description for TRNS3.

(

Name

La	dder format			C	onditio	n code					i	Pro	ces	sing t	ime (µs)		Remarks
TF	NS4 (d,s,t)	R71	F4	R7F	3 R7F2	R7F1	R7FC	2		H-2	200)			H-700,	/ 300	
		DEF	۲	ERR	SD	v	С		Av	erage	1	1ax	imu	m A	verage	Maximu	n
		ŧ		•	•	•	•										
Co	mmand format			No	. of st	eps				H-2	2002	2			11-702	/ 302	
TR	NS4 (d,s,t)	(Cond	iti	ons	St	ep		٨ν	erage	1	laxi	່ເທບກ	n A	verage	Maximu	n j
				-		5				109		17	76		207	334	
					Bi	t			W	ord		Dou	191¢	e word			
	Usable I/O		x	Y	R,L,M	TD,SS, MS,TMR CUR,CT	,cu,	wx	WY	WR,WL WM	тс	DX	DY	DR, DL DM	Constant	Array	Other
d	Module instal lation locati								0								
s	Top of parame area	ter								0							In regard to "s," up to s + 16 is used.
t	Top of commun cations contr bit area				o												In regard to "t," up to t + 5 is used.

Function

- 1. This command is used between the two axis positioning module (POSIT-2H, POSITA-2H) and the CPU. This command is used to send the command and data to the CPU, then receive the response data.
- The smallest WY number of the I/O assignment WY for the installation location of FOSIT-2H and POSITA-2H which communicates with this command is set in d. (Designate WY***4.)
- 3. The top I/O number of the parameter area which sets the various parameters (time out value, top I/O number and size of the transmission and reception data area, control data) for communications is set in s.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.

Precautions

- Array variables cannot be used in d, s and t.
- . Use s + 16 and t + 5 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

```
S
       (1) Return code
S+1
       (2) Status
  2
       (3) Status
       (4) System area
           (Not usable by
            the user.)
                            e a state d
                            19.2
  9
       (5) Time out time
       (6) Top I/O of the
 10
           transmission area
 11
       (7) Transmission area size
 12
       (8) Top I/O of the
 13
           reception area
 14
 15
       (9) Reception area size
 16
       (10) Control data
          User access prohibited area
      :
          User setting area
      :
(1) Return code:
     The execution results of the TRNS4 command are set.
     Normal end 🔶 0
     Abnormal end - + 0 (See TRNSO for details.)
(2) and (3) Status:
     The contents of the status words (WX***0) of POSIT-2H, POSITA-2H are
     set.
(4) System area:
    When the TRNS4 command is executed, this area is used for system
     processing. This area cannot be used by the user.
(5) Time out time:
     This sets the time out time from the top of the TRNS4 command
     execution to its completion.
    = 0: No time out checking.
     \neq 0: *10 ms time out check executed.
```

(6) Top I/O of the transmission data area:

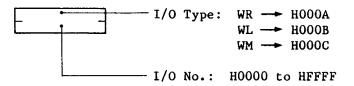
This designates top I/O type and number of the area holding the transmission data when the TRNS4 command is sent. (Note)

(7) Transmission data area size:

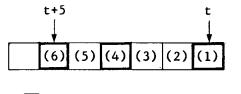
This designates the size of the transmission data area in word units.

(8) Top I/O of the reception area:

This designates top I/O type and number of the area holding the transmission data when the TRNS4 command is sent. (Note)


(9) Reception area size:

This designates the size of the reception data area in word units.


(10) Control data:

This sets the command for the two axis positioning module. Refer to the two axis positioning module manual or instruction manual for details on the command.

(Note)

6. Description of the t area

(\Box : Bits set by the user.)

(1) Communication execution:

When communication is executed with the TRNS4 command, the user program should set "1." When communication is ended, the TRNS4 command should be reset to "0."

(2) Normal end:

When communications with the TRNS4 command ends normally, "1" is set. When communication is started, this bit is reset to "0."

(3) Abnormal end:

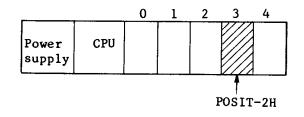
When communications with the TRNS4 command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the TRNS4 command is set to the initial state, this is set to "1." (This is not initialization of the high function module.)

,

(5) Initialization end:

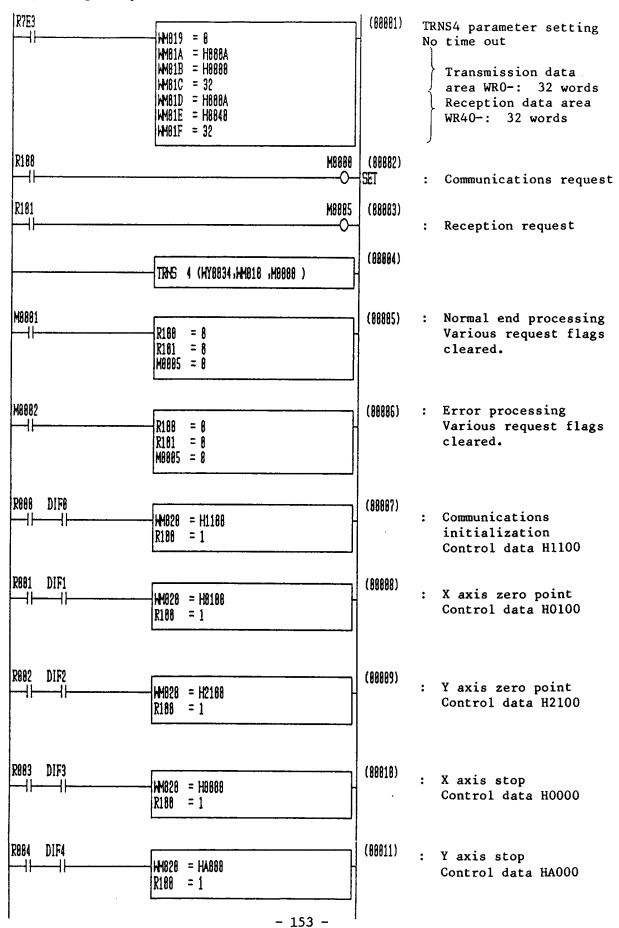

When initialization of the TRNS4 command ends normally, this bit is set to "1." At this time, the initialization request (4) will be reset to "0."

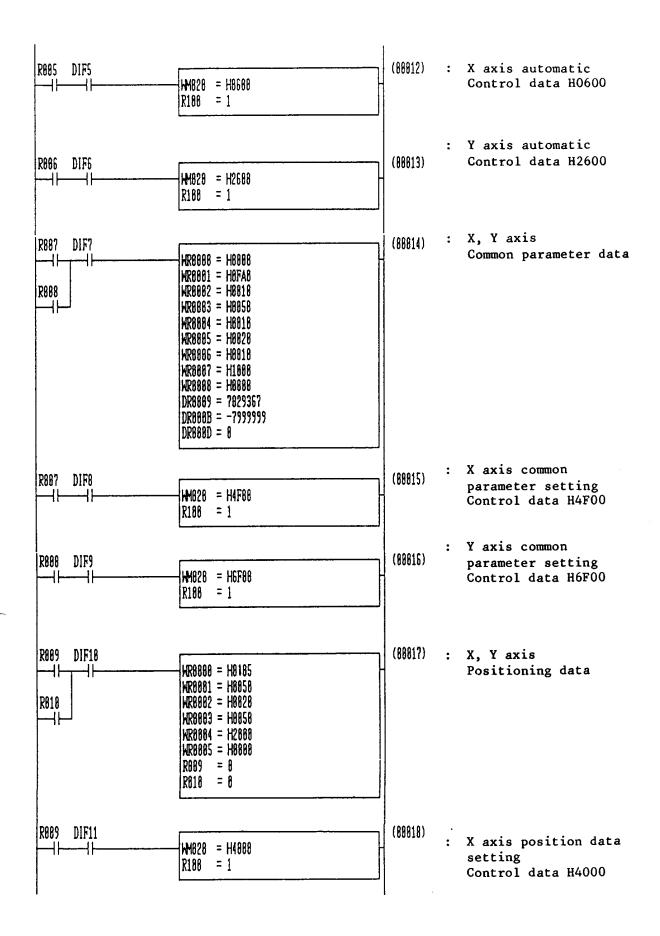
(6) Transmission/reception request:

When reception is to be executed after transmission with this command, set 1 in the user program. Reset should also be executed by the user program.

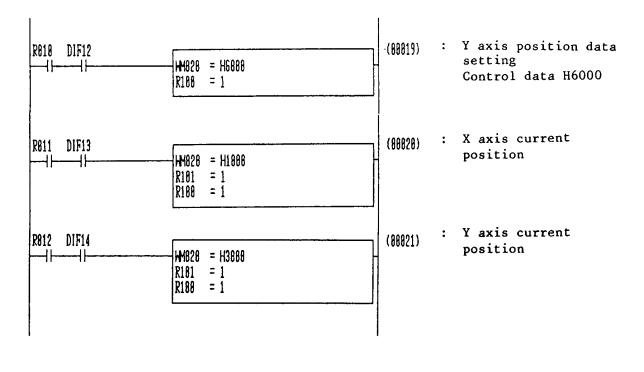
This is a programming example in which a two axes positioning module (POSIT-2H) is used, and goes from initialization to operation.

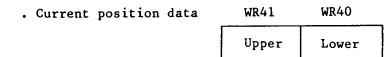
(1) POSIT-2H installation




POSIT-2H is installed in slot three of the basic unit. Therefore, the I/O assignments for POSIT-2H are WX30 to WX33 and WY34 to WY37. WY34 is designated for the d parameter of TRNS4.

(2) Internal output assignment


The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.


I/0	No.	Purpose	Remarks
WM	010 to 01A	TRNS4 command parameter area (s to s+10)	
М	0000 to 0005	TRNS4 command communication control bit area (t to t+5)	
WR	0000 to 001F	TRNS4 command transmission data area (32 words)	
WR	0040 to 003F	TRNS4 command reception data area (32 words)	
R	00000	Communications initialization request	
	00001	X axis zero return request	
	00002	Y axis zero return request	
	00003	X axis stop request	· · · · · · · · · · · · · · · · · · ·
	00004	Y axis stop request	
	00005	X axis automatic operation 3	
	00006	Y axis automatic operation 3	
	00007	X axis common parameter setting	
	00008	Y axis common parameter setting	
	00009	X axis positioning data setting	
	00010	Y axis positioning data setting	
	00011	X axis current position data request	
	00012	Y axis current position data request	
	00100	TRNS4 activation flag	_
	00101	TRNS4 reception flag	

TRNS 4

- 1. Special internal output R7E3 (one scan on) is used to set the TRNS4 parameters.
- 2. When the communication start condition R100 is set, the communication execution flag M0 is turned on.
- 3. When the reception condition R101 is set, the reception flag used after communication M5 is turned on.
- 4. Communications processing is executed for the two axes positioning module installed in slot 3 of the basic unit.
- 5. When the normal end flag Ml is set, normal end processing is executed, and the communication start condition R100, reception condition R101, and the reception flag used after communication M5 are cleared.
- 6. When the abnormal end flag M2 is set, normal end processing is executed, and the communication start condition R100, reception condition R101, and the reception flag used after communication M5 are cleared.
- 7. When the communication initialization condition RO is set, the control data is set, and the communication start condition R100 is turned on.
- 8. When the X axis zero return condition R1 is set, the control data is set, and the communication start condition R100 is turned on.
- 9. When the Y axis zero return condition R2 is set, the control data is set, and the communication start condition R100 is turned on.
- 10. When the X axis stop condition R3 is set, the control data is set, and the communication start condition R100 is turned on.
- 11. When the Y axis stop condition R4 is set, the control data is set, and the communication start condition R100 is turned on.
- 12. When the X axis automatic 3 condition R5 is set, the control data is set, and the communication start condition R100 is turned on.
- 13. When the Y axis automatic 3 condition R6 is set, the control data is set, and the communication start condition R100 is turned on.
- 14. When the common parameter setting condition R7 or R8 is set, the common parameters, transmission area address and length are set.
- 15. When the X axis common parameter setting condition R7 is set, the control data is set, and the communication start condition R100 is turned on.
- 16. When the Y axis common parameter setting condition R8 is set, the control data is set, and the communication start condition R100 is turned on.
- 17. When the positioning data setting condition R9 or R10 is set, the positioning data, transmission area address, and length are set.

- 18. When the X axis positioning setting condition R9 is set, the control data is set, and the communication start condition R100 is turned on.
- 19. When the Y axis positioning setting condition R10 is set, the control data is set, and the communication start condition R100 is turned on.
- 20. When the X axis current value read condition Rll is set, the control data is set, and after communication with the communication start condition R100, the reception condition R101 is turned on.
- 21. When the Y axis current value read condition R12 is set, the control data is set, and after communication with the communication start condition R100, the reception condition R101 is turned on.

Name

La	dder format			Con	ditio	n code						Pro	ces	sing t	ime (µs)		Remarks
QT	RNS4 (d,s,t)	R7F	4 1	R7F3	R7F2	R7F1	R7F	0		H-	200)			H-70)/ :	300	
		DER	F	ERR	SD	v	С		Av	erage		lax	imu	n A	verage		Maximu	m
		\$		•	•	•	•											
Co	mmand format			No.	of st	eps	•			н-	200	2	-		H-70	2/:	302	
QT	RNS4 (d,s,t)	0	ondi	itior	ıs	St	ep		Av	erage		lax	imut	n A	verage		Maximu	m
				-		5				516		29	90		1791		3500	
					Bi				W	ord		Do	uble	e word				
	Usable I/O		x	YE	ι, ι ,Μ	TD,SS, MS,TMR CUR,CT	,cu,	wx	WY	WR,WL WM	тс	DX	DY	DR,DL DM	Constan	nt	Array	Other
d	Module insta lation locat								0									
s	Top of parame area	eter								o								In regard to "s," up to s + 19 is used.
t	Top of communications controls bit area				0													In regard to "t," up to t + 5 is used.

Function

- 1. This command is used between the two axis positioning module (POSIT-H, POSITA-2H) and the CPU. This command is used to send the command and data to the CPU, then receive the response data.
- The smallest WY number of the I/O assignment WY for the installation location of POSIT-H and POSITA-2H which communicates with this command is set in d. (Designate WY***4.)
- 3. The top I/O number of the parameter area which sets the various parameters (time out value, top I/O number and size of the transmission and reception data area, control data) for communications is set in s.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.
- 5. The QTRNS4 command will send data for the period designated by the parameters during one scan.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 19 and t + 5 so that they do not exceed the I/O range (R7FF, LO3FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

S	(1) Return code	
S+1	(2) Status	
2	(3) Status	
	(4) System area (Not usable by the user.)	
11	(5) Time out time	
12	(6) Maximum execution time	
13 14	(7) Top I/O of the - transmission area -	
15	(8) Transmission area size	
16	(9) Top I/O of the	
17	- reception area -	
18	(10) Reception area size	
19	(11) Control data	
/ \ (1)	User access prohibited area User setting area Return code	
	The execution results of QTRNS4 c Normal end 0 Abnormal end \= 0 (See TRNS0	
(2)	and (3) Status:	
	The contents of the status words function modules are set.	(WX***0) of the various high
(4)	System area:	
	When the QTRNS4 command is execut system processing. This area can	

(5) Time out time:

This sets the time out time from the top of the QTRNS4 command execution to its completion. = 0: No time out checking. \ne 0: *10 ms time out check executed.

(6) Maximum execution time:

This designates the time of execution during one scan. = 0: Invalid (Executes in the normal manner.) ≠ 0: For *ms, executes the process of this command.

(7) Top I/O of the transmission data area:

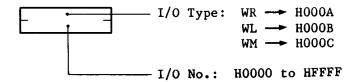
This designates top I/O type and number of the area holding the transmission data when the QTRNS4 command is sent. (Note)

(8) Transmission data area size:

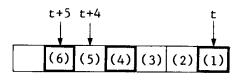
This designates the size of the transmission data area in word units.

(9) Top I/O of the reception area:

This designates top I/O type and number of the area holding the transmission data when the QTRNS4 command is sent. (Note)


(10) Reception area size:

This designates the size of the reception data area in word units.


(11) Control data:

Specify according to the contents to be communicated. Refer to TRNS4.

(Note)

6. Description of the t area

 $(\Box : Bits set by the user.)$

(1) Communication execution:

When communication is executed with the QTRNS4 command, the user program should set "1." When communication is ended, the QTRNS4 command should be reset to "0."

(2) Normal end:

When communications with the QTRNS4 command ends normally, "1" is set. When communication is started, this bit is reset to "0."

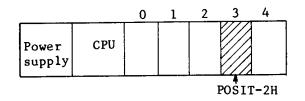
(3) Abnormal end:

When communications with the QTRNS4 command ends in an error or there is an error in a parameter, this is set to "1." When communication is started, this bit is reset to "0."

(4) Initialization request:

When the QTRNS4 command is set to the initial state, this is set to "1." (This is not initialization of the high function module.)

(5) Initialization end:

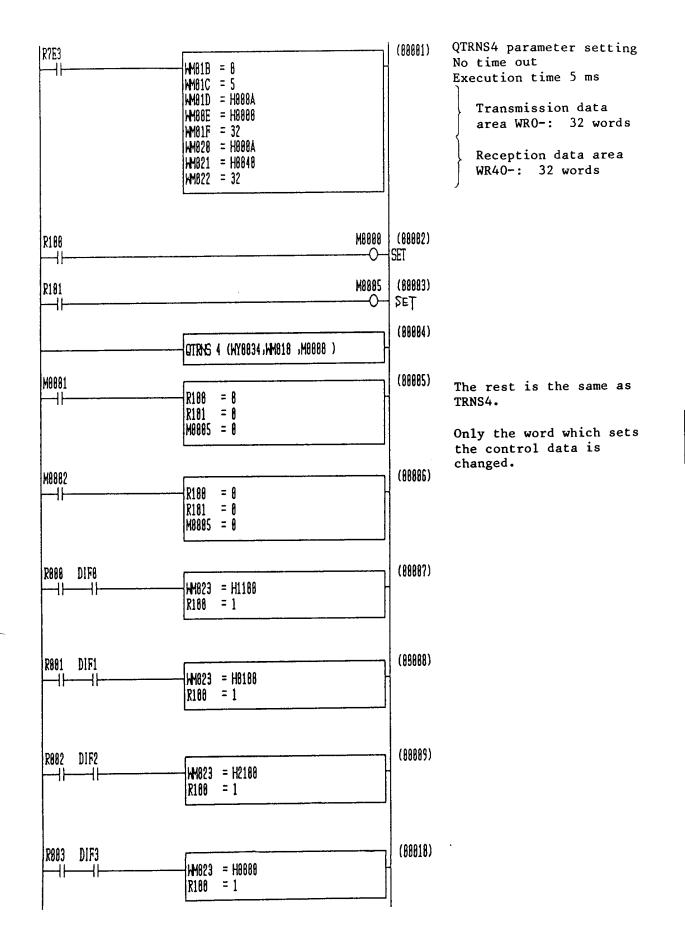

When initialization of the QTRNS4 command ends normally, this bit is set to "1." At this time, the initialization request (4) will be reset to "0."

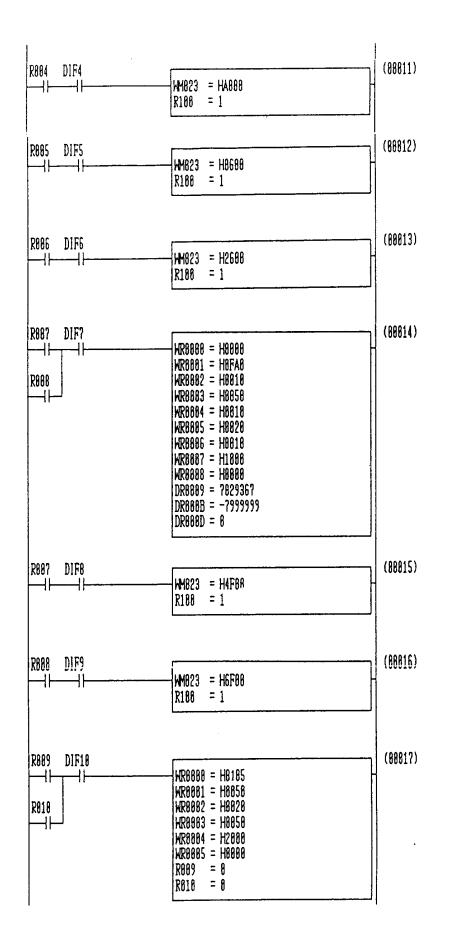
(6) Transmission/reception request:

When reception is to be executed after transmission with this command, set 1 in the user program. Reset should also be executed by the user program.

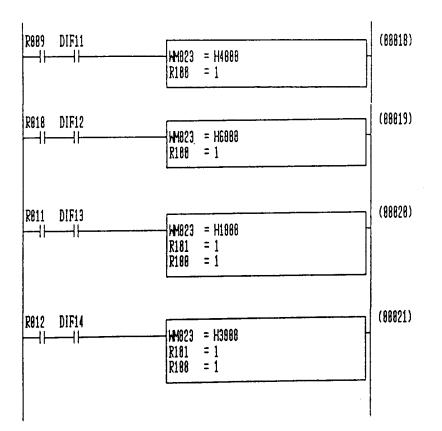
This is a programming example in which a two axes positioning module (POSIT-2H) is used, and goes from initialization to operation.

(1) POSIT-2H installation




POSIT-2H is installed in slot three of the basic unit. Therefore, the I/O assignments for POSIT-2H are WX30 to WX33 and WY34 to WY37. WY34 is designated for the d parameter of QTRNS4.

(2) Internal output assignment


The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc.

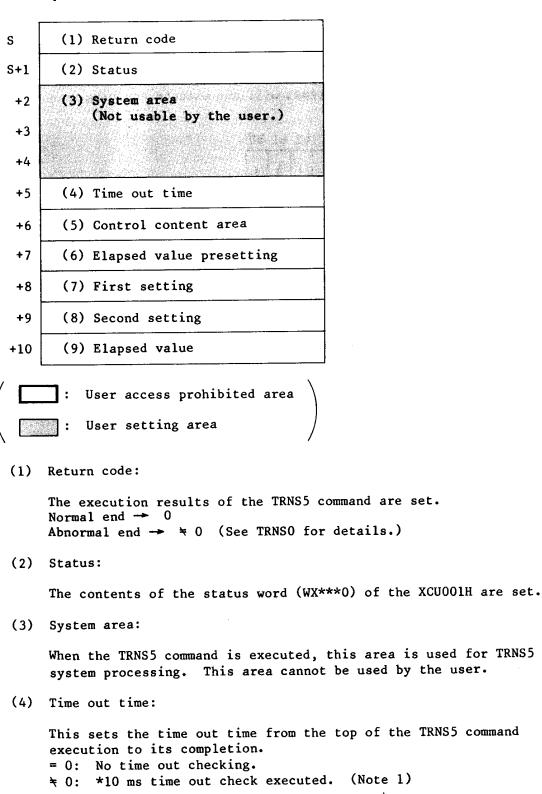
1/0	No.	Purpose	Remarks
WM	010 to 023	QTRNS4 command parameter area (s to s+19)	
М	0000 to 0005	QTRNS4 command communication control bit area (t to t+5)	
WR	0000 to 001F	QTRNS4 command transmission data area (32 words)	
ŴR	0040 to 003F	QTRNS4 command reception data area (32 words)	
R	00000	Communications initialization request	····
	00001	X axis zero return request	
	00002	Y axis zero return request	
	00003	X axis stop request	
	00004	Y axis stop request	
	00005	X axis automatic operation 3	
	00006	Y axis automatic operation 3	
	00007	X axis common parameter setting	
	00008	Y axis common parameter setting	
	00009	X axis positioning data setting	
	00010	Y axis positioning data setting	
	00011	X axis current position data request	
	00012	Y axis current position data request	
	00100	QTRNS4 activation flag	
	00101	QTRNS4 reception flag	

QTRNS 4

······	
· · · · · · · · · · · · · · · · · · ·	
i de la construcción de la constru	

Name 1 quantity counter module communications command

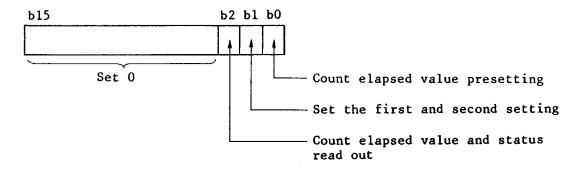
La	adder format			C	onditi	on code						Pro	ces	sing	g t	ime (µs)		Remarks
T	RNS5 (d,s,t)	R7	F4	R7F	3 R7F	2 R7F1	R 7F	0		н-	200	0				H-700	/ 300	
		DEI	R	ERR	SD	v	С		A١	erage	Τ	Max	imu	m	A	verage	Maxim	បរា
		\$		•	•	•	•				-							
Co	ommand format			No	of s	eps	1			н-:	200	2				H-702	/302	
Т	RNS5 (d,s,t)		Cond	liti	ons	St	ep		Av	erage	Τ	Max	imu	na 🛛	A	verage	Maxim	au
				-		5												
					Bi	.t			W	ord		Do	uble	e wo	rd			
	Usable I/O		x	Y	R,L,M	TD,SS, MS,TMR CUR,CT	,cu,		wy	WR,WL WM	тс	DX	DY	DR, DM	DL	Constan	t Array	Other
d	Module instal lation locati	.)							0									
s	Top of parame area	ter								0					_			In regard to "s," up to s + 9 is used.
t	Top of commun cations contr bit area				0													In regard to "t," up to t + 2 is used.


Function

- 1. This is the communication command used between the one quantity counter module (XCU001H) and the CPU. This command sets the presetting for the count elapsed value, elapsed value reading, first setting, and second setting for XCU001H.
- The smallest WY number of the I/O assignment WY for the installation location of the counter module which communicates with this command is set in d. (Designate WY***4.)
- 3. The top I/O number of the parameter area which sets the various parameters (presetting value for the control content count elapsed value, first setting, second setting) for communications is set in s.
- 4. The control bit which controls the start of communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.

Precautions

- . Array variables cannot be used in d, s and t.
- . Use s + 9 and t + 2 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.


5. Description of the s area

(5) Control contents:

This designates the communications process executed by the TRNS command for the counter module. Select the corresponding bit, and set "1." "1" can be set simultaneously for the following depending on the control contents.

(1 to 7: If 0 is set, TRNS5 will not execute anything.)

(6) Elapsed value presetting:

This sets the presetting in the counter module elapsed value.

(7) First setting:

This sets the first setting in the counter module.

(8) Second setting:

This sets the second setting in the counter module.

(9) Elapsed value:

The current elapsed value data (WX***1) of the counter module is set.

Precautions


Note 1:

- . Set the time out time as follows.
 - (1) When the one quantity counter module is installed in the basic or expansion unit:

Set a value larger than the user program scan time.

(2) When the one quantity counter module is installed in a remote unit:

T = max (user program scanning time, 30 msec), so that a value larger than T should be set.

(🔲 : Bits set by user.)

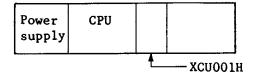
(1) Communication execution:

When communication is started with the TRNS5 command, "1" is set by the user program. After communications, this bit will be reset to "0" by the TRNS5 command.

(2) Normal end:

When the communications by the TRNS5 command ends normally, "1" is set.

When communications are started, this bit will be reset to "0" by the TRNS5 command.

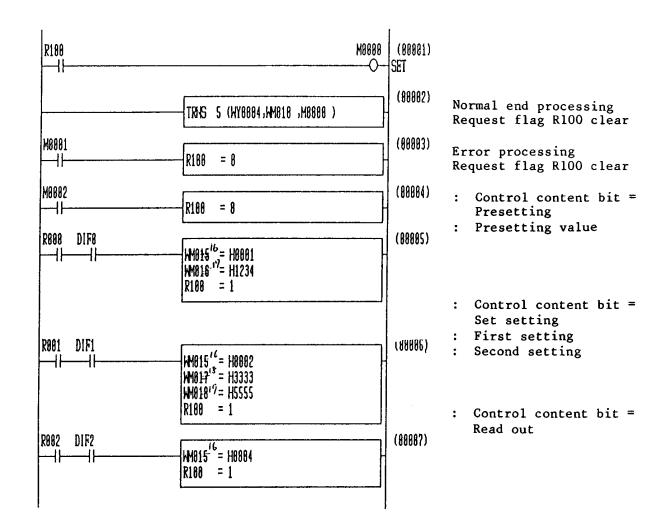

(3) Abnormal end:

When the communications by the TRNS5 command ends abnormally, or there is an error in the parameters, "1" is set. When communications are started, this bit will be reset to "0" by the TRNS5 command.

Program Description

The following is an example of a program which uses the counter 1 quantity module (XCU001H), and sets the counter elapsed value presetting, and the first and second setting registers.

(1) XCU001H installation


XCU001H is installed in slot 0 of the basic unit. XCU001H is assigned to WX0 to 3 and WY4 to 7. The d parameter of the TRNS5 command should designate WY4.

(2) Internal output assignment

The programming example will use the following assignments. In actual applications, be sure to modify the I/O numbers, etc. according to the user program.

1/0	No.	Purpose	Remarks						
WM	10 to 1A	Parameter area	<u> </u>						
м	0 to 2	Communication control bit							
R	0	0 Counter presetting flag							
	1	l Setting request flag for settings							
	2								
	100	Communication start flag							

.

Program Description

TRNS

	 	· · · · · · · · · · · · · · · · · · ·

Name Two quantity counter module communications command

La	dder format			Cc	onditio	n code						Pro	ces	sing t	ime (µs)		Remarks
TR	NS6 (d,s,t)	R71	F4	4 R7F3 R7F2 R7F1 R7F0			0	H-2000 H-700/300									
		DEF	۲ ا	ERR	SD	V	С		Average			Maximum		m /	verage	Maximu	m
		\$		•	•	•	•				-						
Co	mmand format			No	. of st	eps		1		H-:	200	2			H-702	/302	
TR	NS6 (d,s,t)		Cond	itio	ons	St	ep		Av	erage	Τ	Max	imu	na 1	verage	Maximu	m
				-		5	5			450		8	40		599	1080	
					Bi	t			W	ord		Do	ubl	e word	1		
	Usable I/O		x	Y	R,L,M	TD,SS, MS,TME CUR,CI	α,CU,	wx	WY	WR,WL WM	тс	DX	DY	DR, DI DM	. Constan	Array	Other
d	Module instal lation locati								0								
s	Top of parame area	eter								0							In regard to "s," up to s + 25 is used.
t	Top of commun cations contr bit area				0												In regard to "t," up to t + 2 is used.

Function

- 1. This command is used between the two quantity counter module (XCU232H) and the CPU. This command is used to send the command and data to the CPU, then receive the response data.
- The smallest WY number of the I/O assignment WY for the installation location of XCU232H which communicates with the TRNS6 command is set in d. (Designate WY***4.)
- 3. The top I/O number of the parameter area which sets the various parameters (time out value, top I/O number and size of the transmission and reception data area, etc.) for communications is set in s.
- 4. The control bit which starts and initializes communications, and top I/O No. of the communication control bit area in which the results of communications are set in t.

- Array variables cannot be used in d, s and t.
- . Use s + 25 and t + 2 so that they do not exceed the I/O range (R7FF, L03FFF, L13FFF, M3FFF, WRC3FF, WL3FF, WL13FF, WM3FF). If they do exceed the range, then DER = 1 will be true, and communications will not be executed.

5. Description of the s area

S	(1) Return code
S+1	(2) Status
	(3) System area
S+8	(4) Time out time
S+9	(5) Control content area
S+10	(6) 1 quantity current value
S+12	(7) l quantity current value setting
S+14	<pre>(8) 1 quantity comparative value</pre>
S+16	(9) l quantity comparative value setting
S+18	(10) 2 quantity current value
S+20	(11) 2 quantity current value setting
S+22	(12) 2 quantity comparative value
S+24	(13) 2 quantity comparative value setting

User access prohibited area

(1) Return code:

The execution results of the TRNS6 command are set. Normal end $\rightarrow 0$ Abnormal end $\rightarrow \mp 0$ (See TRNS0 for details.)

(2) Status:

The contents of the status word (WX***0) of the XCU232H are set.

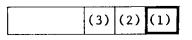
(3) System area:

When the TRNS6 command is executed, this area is used for TRNS6 system processing. This area cannot be used by the user.

(4) Time out time:

This sets the time out time from the top of the TRNS6 command execution to its completion. = 0: No time out checking. ≠ 0: *10 ms time out check executed. (Note 1)

(5) Control contents:


This designates the communications process executed by the TRNS command for the counter module. Select the corresponding bit, and set "1."

	11	10	9	8		3	2 1	. ()
		2 quant	ity				l quar	tity	
0000	Compa value	rative	Cur: val		0000	Compan value	ative	Curi valu	
	Setting	Read out	Setting	Read out		Setting	Read out	Setting	Read out

"1" can be set simultaneously for these depending on the control contents. If H0000 is set, TRNS6 cannot execute anything.

- (6) 1 quantity current value read out area (s+4: Lower, s+5: Upper)
- (7) 1 quantity setting data storage area (lower then upper)
- (8) 1 quantity comparative value read out area (lower then upper)
- (9) 1 quantity comparative value setting data storage area (lower then upper)
- (10) 2 quantity current value read out area (lower then upper)
- (11) 2 quantity current value setting data storage area (lower then upper)
- (12) 2 quantity comparative value read out area (upper then lower)
- (13) 2 quantity comparative value setting data storage area (lower then upper)

6. Description of the t area

(**[]** : Bits set by the user.)

(1) Communication execution:

When communication is started with the TRNS6 command, "1" is set by the user program. After communications, this bit will be reset to "0" by the TRNS6 command.

(2) Normal end:

When the communications by the TRNS6 command ends normally, "1" is set. When communications are started, this bit will be reset to "0" by the TRNS6 command.

(3) Abnormal end:

When the communications by the TRNS6 command ends abnormally, or there is an error in the parameters, "1" is set. When communications are started, this bit will be reset to "0" by the TRNS6 command.

Precautions

Note 1:

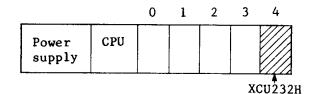
. Set the time out time as follows.

(1) When the two quantity counter module is installed in the basic or expansion unit: Set a value larger than User Program Scanning Time x Control Contents x 2.

Example: Scanning time = 30 msec

Control contents = 3 (1 quantity current value read out and setting, 2 quantity current value setting)

In the above example, a value larger than $30 \times 3 \times 2 = 180$ msec must be set.


(2) When the one quantity counter module is installed in a remote unit:

T = max (user program scanning time, 30 msec), so that a value larger than T x Control Contents x 2 must be set.

Programming Example

The following is a programming example in which the 2 quantity counter module (XCU232H) is used from initialization to operation.

1. XCU232H installation

XCU232H is installed in slot 4 of the basic unit. XCU232H is assigned to WX40 to 43 and WY44 to 47.

The d parameter of the TRNS6 command should designate WY44.

1/0	No.	Туре	Remarks
WM	10 to 25	Parameter area	
М	0 to 2	Communication control bit	
R	D	All read out flag	
	1	2 quantity comparative value setting flag	
	2	2 quantity current value setting flag	
	3	1 quantity comparative value setting flag	
	4	l quantity current value setting flag	
	100	Communication start flag	

Programming Example

R188		M8888 (88881)		
	TRIS 6 (HY8844, HM818 , M8888)		:	Normal end processing Request flag R100 clear
M8881 	R188 = 8] (88983)	:	Error processing Request flag R100 clear
M8882		(86864)	:	Control content All read out
R888 DIF8 	HM019 = H0585 R100 = 1	(88885)	:	Control content: 2 quantity comparative value setting
R881 DIF1 	HMB 19 = H8008 HMB 28 = H3456 HMB 29 = H6012 R168 = 1	(98886)	:	Control content: 2 quantity current value setting
R882 DIF2 	HM8 19 = H8288 HM8 24 = H4567 HM8 25 = H8823 R188 = 1	(88887)	:	Control content: 1 quantity comparative value setting
R003 DIF3 	HMB 19 = H8008 HMB 20 = H5678 HMB 21 = H6034 R180 = 1	(88888)	:	Control content: l quantity current value setting
R884 DIF4 	HH8 19 = H8882 HH8 10 = H8789 HH8 10 = H8845 R188 = 1	(88889)		

•

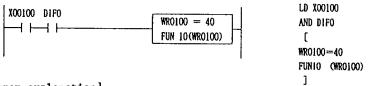
Program Description

- 1. When communication start condition R100 is set, the communication execution flag M0 is turned on.
- 2. Communications processing is executed for the 2 quantity counter module.
- 3. When the normal end flag M1 is set, normal end processing is executed and communication start condition R100 is cleared.
- 4. When the abnormal end flag M2 is set, abnormal end processing is executed and communication start condition R100 is cleared.
- 5. When all the all read out condition for 1 quantity and 2 quantity RO is set, the control contents are set, and the communication start condition R100 is turned on.
- 6. When the 2 quantity comparative value setting condition R1 is set, the control contents are set, and the communication start condition R100 is turned on.
- 7. When the 2 quantity current value setting condition R2 is set, the control contents are set, and the communication start condition R100 is turned on.
- 8. When the 1 quantity comparative value setting condition R3 is set, the control contents are set, and the communication start condition R100 is turned on.
- 9. When the 1 quantity current value setting condition R4 is set, the control contents are set, and the communication start condition R100 is turned on.

[4] FUN Command

r	
<u> </u>	
<u>ــــــــــــــــــــــــــــــــــــ</u>	

[Name] SIN function


Ladder format		Condition code							Proce	s)	Remarks			
FUN 10 (S)	R7F4	R7F	R7F3 R7F2 R7F1 R7F0					н-2002			н-702/302			
* (SIN (S))	DER	ERR	5	SD	v	С	Average		Maximum		Average		Maximum	
	Ţ	•		•	•	•	1							
Command format		No	. of	ste	ps		2	25		27		50	54	
FUN 10 (S)	Co	ondit	ions		St	ep								
* (SIN (S))		-			3									
	Bit						Word			Double word				
Usable I/O		x Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		K WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
S Argument								0						S to S+2 are used.

[Function]

S + 2	•	S+1		S	
15	8 15	Q		15	0
Integer part	Fract	ion part	← SIN	0 to 360°	٦

- The SIN value having a sign specified by S or a binary value as an argument is calculated, and the integer part is set in S+2 and the fraction part is set in S+1.
- The SIN value is expressed by a binary value and a negative number is expressed by twos complement.
- . When operations are performed normally, DER = 0.
- \star The contents of () are indications when the ladder editor is used.

[Program example]

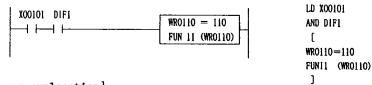
[Program explanation]

- . An angle of 40° is set in WR0100.
- . The SIN operation is performed at the leading edge of X00100, and the fraction part of the result is set in WR0101 in a binary value and the integer part is set in WR0102.

Execution result: WR0102 = H0000, WR0101 = HA48E, WR0100 = H0028

- . The argument S is given by an angle (degree) and ranges from 0 to 360. When S is beyond the limits, DER = 1 and no operation is performed.
- . When S+1 and S+2 are beyond the maximum I/0 number, DER = 1 and no operation is performed.

 · ·		
 	 	 -


[Name] COS function

Ladder format	format Condition code								I	roce	s)	Remarks			
FUN 11 (S)	R7F4 R7F3 R7F2 R7F1 R7F0					5	H-2002					H-702	/302		
* (COS (S))	DER	ER	R	SD	v	С	1	Aver	age	Maxi	ասա	Ave	rage	Maximum	
	1	•		•	•										
Command format		N	0. 0	of ste	ps			35		37		5	2	56	
FUN 11 (S) Conditions Step		ер													
* (COS (S))		-			3	3									
				Bit				Wo	rd		Dou	ble	word		
Usable I/O		x	Y I	L, MS),SS,WI 5,TMR,G CU,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S Argument					•				0						S to S+2 are used.

[Function]

- . The COS value having a sign specified by S or a binary value as an argument is calculated, and the integer part is set in S+2 and the fraction part is set in S+1.
- . The COS value is expressed by a binary value and a negative number is expressed by twos complement.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

[Program example]

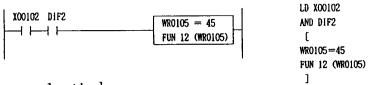
[Program explanation]

- . An angle of 110° is set in WR0110.
- . The COS operation is performed at the leading edge of X00101, and the fraction part of the result is set in WR0111 in a binary value and the integer part is set in WR0112.

Execution result: WR0112 = HFFFF, WR0111 = HA871, WR0110 = H006E

- . The argument S is given by an angle (degree) and ranges from 0 to 360. When S is beyond the limits, DER = 1 and no operation is performed.
- . When S+1 and S+2 are beyond the maximum I/0 number, DER = 1 and no operation is performed.

 · · · · · · · · · · · · · · · · · · ·		


[Name] TAN function

Ladder format		Condition code]	Proce	ssin	g ti	me (µ	s)	Remarks
FUN 12 (S)	R7F4	R	7F3	R7F2	R7F1	R7F0	5		H-20	002			H -702	/ 302	
* (TAN (S))	DER	EI	RR	SD	V	С		Aver	age	Maxi	ոսա	Ave	rage	Maximum	
			•	•	•	•									
Command format	-	1	No.	of st	eps			36		38		5	3	55	
FUN 12 (S)	с	ond	itic	ns	St	сер									
* (TAN (S))			-		:	3									
				Bit				Wo	rd		Dou	ble	word		
Usable I/O X Y L, MS,TMR,CU, M RCU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other					
S Argument									0						S to S+2 are used.

[Function]

- . The TAN value having a sign specified by S or a binary value as an argument is calculated, and the integer part is set in S+2 and the fraction part is set in S+1.
- . The TAN value is expressed by a binary value and a negative number is expressed by twos complement.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

[Program example]

[Program explanation]

- . An angle of 45° is set in WR0105.
- . The TAN operation is performed at the leading edge of X00102, and the fraction part of the result is set in WR0106 in a binary value and the integer part is set in WR0107.

Execution result: WR0107 = H0001, WR0106 = H0000, WR0105 = H002D

[Precautions]

. The argument S is given by an angle (degree) and ranges from 0 to 360. When S = 90 or 270, H7FFF or HFFFF is set in S+2 or S+1. When S is beyond the limits, DER = 1 and no operation is performed. When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no operation is performed.

FUN 12 (TAN)


1	
[Name] ARC SIN function	
[Name] W/O DIN I director	

Ladde	er format		Condition code								I	Proce	ssin	g ti	me (µ	s)	Remarks			
FUN 1	L3 (S)	R7F4	R	7F3	R7	F2	R7F1	R7F1 R7F0			'F1 R7F0			H-20				H -702	/302	
* (A9	5IN (S))	DER	Eł	RR	s	D	v	V C		Average		Maxi	อบฉ	Average		Maximum				
		1		•	•		•	•												
Comma	and format		No. of steps							11	2	11	4	2	216	220				
FUN 2	13 (S)	C	ond	iti	ons		St	:ep												
* (A	SIN (S))		- 3]								
					B	it				Wo	rd		Dou	ıble	word					
	Usable I/O		x	Y	R, L, M	MS),SS,WI 6,TMR,(CU,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other			
S	Argument (fraction)		 						0						S to S+2 are used.				
S+1	Argument (integer)					0														

[Function]

- The SIN⁻¹ value having a binary value specified by S (fraction part) and S+1 (integer part) as an argument is calculated and outputted to S+2.
- . The SIN⁻¹ value is an angle (degree) ranging from 0 to 90 or from 180 to 270 and expressed by a binary value.
- . When operations are performed normally, DER = 0.
- . The data in the fraction part is the real value x 65535.
- * The contents of () are indications when the ladder editor is used.

[Program example]

[Program explanation]

- . Data is set in DR0010 (WR0010, WR0011).
- . The SIN⁻¹ operation is performed at the leading edge of X00103, and the result is set in WR0012 in a binary value.

Execution result: WR0012 = H0028, WR0011 = H0000, WR0010 = HA48E

[Precautions]

- . When | S+1.S | > 1, DER = 1 and no operation is performed.
- . When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no operation is performed.

FUN 13 (ASIN)

· · · · · · · · · · · · · · · · · · ·	 	

[Name] ARC COS function

Ladd	er format		Со	ndit	ion	code		Ì		Proce	ssin	g ti	me (µ	s)	Remarks
FUN	14 (S)	R7F4	R7F	3 R	7F2	R7F1	R7F0		н-2	002			H-702	/ 302	
* (A	.cos (s))	DER	ERR		SD	v	С	Aver	Maxi	อนอ	Average		Maximum		
		Ì	•		•	•	•								
Comm	and format		No	• of	ste	ps] 11	.4	115		218		221	
FUN	14 (S)	Ce	ondit	ions		St	ер								
* (A	.cos (s))		_				3								
					Bit			We	ord		Dou	ble	word		
	Usable I/O		х ч	R, L, M	MS),SS,WI G,TMR,G CU,CT		K WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S	Argument (fraction)	,							0						S to S+2 are used.
S+1	Argument (integer)								0						

[Function]

15

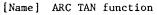
S + 2			S+1		S	
•			15	0	15	0
0 to 180	<u>ــــــ</u>	COS-1	Integer	part	Fraction	part

- . The COS⁻¹ value having a binary value specified by S (fraction part) and S+1 (integer part) as an argument is calculated and outputted to S+2.
- . The COS^{-1} value is an angle (degree) ranging from 0 to 180 and expressed by a binary value.
- . When operations are performed normally, DER = 0.
- . The data in the fraction part is the real value x 65535.
- * The contents of () are indications when the ladder editor is used.

[Program example]

X00104 DIF4		LD X00104
	DROO24=HFFFFA871	AND D1F4
	FUN 14 (WR0024)	[
		DROO24=11FFFFA871
		FUN 14 (WR0024)

[Program explanation]


- . Data is set in DR0024 (WR0024, WR0025).
- . The COS^{-1} operation is performed at the leading edge of X00104, and the result is set in WR0026 in a binary value.

1

Execution result: WR0026 = H006E, WR0025 = HFFFF, WR0024 = HA871

- . When | S+1.S | > 1, DER = 1 and no operation is performed.
- . When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no operation is performed.

L	adde	er format		Condition code								1	roce	ssin	g ti	me (µ	s)	Remarks
F	נ אטז	15 (S)	R7F4	R	7F3	R7	F2	R7F1	R7F	5	н-2002			H-702/302				
*	* (A]	TAN (S))	DER	E	RR	S	D	v	С	Av		age	Maximum		Ave	rage	Maximum	
			\$		•			•	•									
С	Comma	and format			No.	of	ste	ps			123		125		237		241	
F	TUN 1	L5 (S)	С	ond	liti	ons		St	ер									
*	* (A]	TAN (S))			-			51	3									
						B	it			Word Do			Dou	ıble	word			
-	t	Jsable I/O		x	Y	R, L, M	MS	,SS,WE ,TMR,C U,CT		wx	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
s	5	Argument (fraction)	,									0						S to S+2 are used.
s	5+1	Argument (integer)										0						

[Function]

- . The TAN⁻¹ value having a binary value specified by S (fraction part) and S+1 (integer part) as an argument is calculated and outputted to S+2.
- . The TAN⁻¹ value is an angle (degree) ranging from 0 to 180 and expressed by a binary value.
- . When operations are performed normally, DER = 0.
- . The data in the fraction part is the real value x 65535.
- * The contents of () are indications when the ladder editor is used.

[Program example]

[Program explanation]

- . Data is set in DR0030 (WR0030, WR0031).
- . The TAN⁻¹ operation is performed at the leading edge of X00105, and the result is set in WR0032 in a binary value.

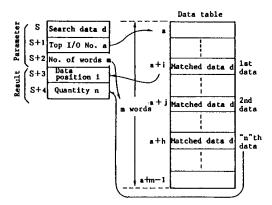
ſ

1

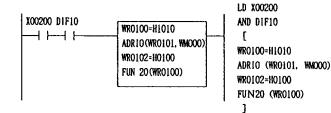
DR0030=1100010000

Execution result: WR0032 = H002D, WR0031 = H0001, WR0030 = H0000

[Precautions]


. When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no operation is performed.

••	 	••••••••••••	


Ladd	er format		Condition code								F	roce	ssin	g ti	me (µ	s)	Remarks	
FUN	20 (S)	R7F4	R	7F3	R7	F2	R7F1	K7.	FO		H-20	002			H - 702	/ 302	Two matched data are found in the	
* (D	SRCH (S))	DER	E	RR	S	D	V	С		Aver	age	Maximum		Average		Maximum	10-word table.	
		1		•	•		•											
Comm	and format		No. of steps							104 270						0		
FUN	20 (S)	с	Conditions Step															
* (D	SRCH (S))		- 3															
					B	it				Wo	rd		Dou	ıb1e	word			
	Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other	
S	Search dat	a				-					o							
S+1	Top I/O No data table		E				0						The real address is set.					
S+2	2 No. of search words				0						S to S+4 are used.							

[Name] Data search (Data search function)

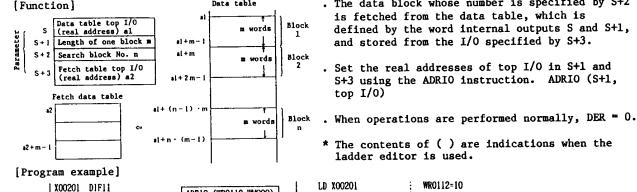
[Function]

[Program example]

- . The search data specified by the word internal output is searched for within the word number range, specified by S+2, of the top I/0 (the real address is specified) specified by S+1, and the data position (relative position from the top I/0), which is found first, is outputted to S+3 and the data quantity, which is found, is outputted to S+4.
- . When no matched data is found, 0 is set in S+3.
- . Set the real address of the search top I/O in S+1 using the ADRIO instruction. ADRIO (S+1, top I/O)
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

Data H1010 is searched for among 256 words of WM000. After searching, the data position is set in WR0103 and the data quantity is set in WR0104.

[Precautions]


- . Set the real address of WR, WL, or WM as a parameter of S+1 using the ADRIO instruction. When other addresses are set, DER = 1 and no processing is performed.
- When S to S+4 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- When S+1 and S+2 or the areas specified by them are beyond the maximum I/O number, DER = 1 and no processing is performed.

- 186 -

[Name]	Table search	(Table search	function)		 	

Ladder format		C	Cond	lition	code				P	roce	ssin	g ti	me (µ	s)	Remarks	
FUN 21 (S)	R7F4	R7	F3	R7F2	R7F1	R7F	0		H-20	02		H-702/302		/ 302	The 10th block (one block is 2	
* (TSRCH (S))	DER	ER	R	SD	v	С	4	Aver	age	Maxi	מטמ	mum Average Maxi		Maximum	words in length) is searched for.	
				•	•	•			- I			L				
Command format		N	lo.	of st	eps				235	i			47	6		
FUN 21 (S)	с	ondi	tic	ons	St	ер.										
* (TSRCH (S))		-	-			3										
				Bit	.			Wo	rd		Dou	ble	word			
Usable I/O		x	Y	L, M	D,SS,WI S,TMR,(CU,CT		wx	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other	
S Data table I/O No.	e top	- +							0						The real address is set.	
S+1 Length of block	one								o						S to S+3 are used.	
S+2 Search blo No.	ock								ο							
S+3 Fetch tab top I/O N									o						The real address is set.	

[Program explanation]

┥┝╾┥┝

The 10th data block is fetched from the data table (one block consists of 2 words) of WM000 and set in the area of WM100.

AND DIFII

WR0111=2

ADRIO (WRO110, WMOOO)

£

ADR10(WR0113, WM100)

]

[Precautions]

. Set the real addresses of WR, WL, or WM as parameters of S+1 and S+3 using the ADRIO instruction. When other addresses are set, DER = 1 and no processing is performed.

ADR10 (WR0110, WM000)

ADRÍO (WRO113, WM100)

WR0111=2

WR0112=10

- . When S to S+3 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- . When S to S+3 or the areas specified by them are beyond the maximum I/O number, DER = 1 and no processing is performed.

 	· · · · · · · · · · · · · · · · · · ·	 	 	
 	• • • • • • • • • • • • • • • • • • • •	 	 	
 · · · · · · · · · · · · · · · · · · ·		 	 	
 		 	 	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		 · · · · · · · · · · · · · · · · · · ·		

[Name]	16-bit	unsigned	binary	->	Decimal	ASCII	conversion	(Binary	to	decimal	ASCII)	
--------	--------	----------	--------	----	---------	-------	------------	---------	----	---------	--------	--

Ladder format	format Condition code							Proce	is)	Remarks						
FUN 30 (S)	R7F4	F	R7F3	R 71	F2	R7F1	R7F	0	H-2002			H -70 2	2/302			
* (BINDA (S))	DER	I	ERR	SI	D	v	С		Aver	age	Maxi	.mum	Ave	rage	Maximum	
	1		•	•		•	•									
Command format			No.	ofs	ster	ps			e	з	8	32	1	.30	170	
FUN 30 (S)	c	ond	liti	ons		St	ep									
* (BINDA (S))			-	•		3										
				Bi	Lt				Wo	rd		Dou	ble	word		
Usable I/O	:	x	Y		MS,	,SS,WD ,TMR,C U,CT	-	wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S Argument (c version dat										o						S to S+3 are used.

[Function]

S

Decimal ASCII data

103

10'

NULL

104

10²

10°

S + 3

16-b

bit	unsigned	binary	data
-----	----------	--------	------

		13	
0 to 65535	Ŷ	S+1	
		S+2	

10ⁿ: ASCII code in the 10ⁿ place

> * The contents of () are indications when the ladder editor is used.

[Program example]

X00300 DIF30	WR0000=12345 FUN 30 (WR0000)

. The 16-bit unsigned binary data specified by the argument S is converted to a 5-digit decimal ASCII code and set in S+1 to S+3.

- . The conversion result is suppressed to 0 and the digits are H2O (space).
- . The remaining digits after ASCII conversion are null, indicating the end of character string.
- . When operations are performed normally, DER = 0.

LD X00300 AND DIF30 [WR0000=12345 FUN 30 (WR0000)]

[Program explanation]

. Binary data of 12345 which is set in WR0000 is converted to an ASCII. The conversion result is set in WR0001 to WR0003.

Execution result: WR0000 = 12345 (H3039), WR0001 = H3132, WR0002 = H3334, WR0003 = H3500

[Precautions]

. When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.

30	(A)
Z	RD
\Box	BI

Ladder format Condition code							F	roce	ssin	g ti	ne (µ	s)	Remarks				
FUN	31 (S)	R 7F 4	R	7F3	R7F	2	R7F1	R7F	0		H-20	002		1	H-702	/302	
* (D	BINDA (S))	DER	E	RR	SD	,	V	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
			\uparrow	•	•		•	•									
Comm	and format	<u>`</u>		No.	of s	ste	ps			16	0	22	6	3	10	438	
FUN	31 (S)	C	ond	iti	ons		St	ep			1		ļ				
* (D	BINDA (S))			-			3	3									r
					Bi	t				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS),SS,WI S,TMR,G CU,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S Argument (low order		r)			_						0						-2147483648 to 2147483647
S+1	Argument (high orde	er)									o						

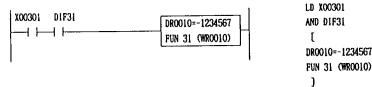
[Name] 32-bit signed binary -> Decimal ASCII conversion (Double binary to decimal ASCII)

[Function]

32-bit	signed binary data	15		• 7	
S	Low-order 16 bits	S+2	Sign	:	10 °
	High-order 16 bits ⇒	S + 3	10*	:	107
		S+4	10*	:	10*
	Positive: H2O (space)	S+5	104		103
	Negative: H2D (-)	S+6	102		10'
10 ⁿ : A	SCII code in the	S+7	10°		NULL

. The 32-bit signed binary data specified by S (low order) and S+1 (high order) is converted to a 10-digit decimal ASCII code and set in S+2 to S+7.

. When the sign is positive, H2O (space) is provided. When the sign is negative, H2D (-) is provided.


• The conversion result is suppressed to 0 and the digits are H20 (space).

. The remaining digits after ASCII conversion are null, indicating the end of character string.

. When operations are performed normally, DER = 0.

* The contents of () are indications when the ladder editor is used.

[Program example]

[Program explanation]

- . Binary data of -1234567 which is set in DR0010 (WR0010, WR0011) is converted to an ASCII.
- . The conversion result is set in WR0012 to WR0017.

Execution result: DR0010 = 1234567 (HFFED2979), WR0012 = H2D20, WR0013 = H2020, WR0014 = H3132, WR0015 = H3334, WR0016 = H3536, WR0017 = H3700

[Precautions]

. When S+1 to S+7 are beyond the maximum I/O number, DER = 1 and no processing is performed.

	 	······································	
1			

Ladder format		Condition code						Proce	essin	ng ti	ime (µ	s)	Remarks			
FUN 32 (S)	R7F	4	R7F3	R7	F2	R7F1	R 71	F0 H-2		H-2	002			H-702	2/302	
* (BINHA (S))	DER		ERR	S	D	v	С		Aver	age	Max	Lmum	mum Ave		Maximum	
	1	-	•	•		•	•									
Command forma	E		No.	of	ste	ps			L	8	(54		97	131	
FUN 32 (S)		Con	diti	ons		St	ep									
* (BINHA (S))			-			3	·									
				В	it				Wo	ord		Dou	uble	word		
Usable I/	D	x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S Argument										o						S to S+3 are used.

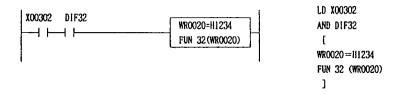
[Name] 16-bit binary -> Hexadecimal ASCII conversion (Binary to hexa ASCII)

[Function]

Hexadecimal ASCII data

16-bit unsigned binary data $S 0_{H \text{ to } FFF_{H}} \Leftrightarrow S+1 16^{3}$

S O_H to FFFF_H \Rightarrow S+1 16³ 16² S+2 16⁴ 16⁹ S+3 NULL 16ⁿ: ASCII code in the 16ⁿ place • The 16-bit unsigned binary data specified by the argument S is converted to a 4-digit hexadecimal ASCII code and set in S+1 to S+3.


. The conversion result is not suppressed to 0.

• Null behind the ASCII data means the end of character string.

. When operations are performed normally, DER = 0.

* The contents of () are indications when the ladder editor is used.

[Program example]

[Program explanation]

. Binary data of H1234 which is set in WR0020 is converted to an ASCII.

. The conversion result is set in WR0021 to WR0023.

Execution result: WR0020 = H1234, WR0021 = H3132, WR0022 = H3334, WR0023 = H0000

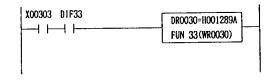
[Precautions]

. When S+1 to S+3 are beyond the maximum I/O number, DER = 1 and no processing is performed.

umber. DE

Lade	ler format		Condition code							F	roce	ssin	g ti	me (µ	s)	Remarks
FUN	33 (S)	R 7F 4	R	7F3	R7F	2 R	R7F1	R7F0		H-20	002			H-702	/302	
* (1	DBINHA (S))	DER	E	RR	SD		v	С	Aver	Average Maxin		ասա	Average		Maximum	
		ţ		•			•	•								
Соп	mand format			No.	of s	teps	5		6	51	7	9	1	24	160	
FUN	33 (S)	С	ond	iti	ons		Ste	p								
* (DBINHA (S))			-			3									
					Bi	t			Wo	ord		Dou	ble	word		
	Usable I/O		x	Y	L,		SS,WDT TMR,CU ,CT		K WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
s	Argument (low order))								o						H00000000 to HFFFFFFF
S+1	Argument (high orde	er)								0						S to S+6 are used.

[Name] 32-bit binary -> Hexadecimal ASCII conversion (Double binary to hexa ASCII)


[Function]

32-bit unsigned binary data Hexadecimal ASCII data

		11	6	17	0
5	Low-order 16 bits	⇒ S+2 [167	16*	
S + 1		S+3	165	161	-
		373			4
		S+4	163	162	
16 ⁿ :	ASCII code in the	S+5	16'	16°	
	16 ⁿ place	S+6		NULL	٦

* The contents of () are indications when the ladder editor is used.

[Program example]

[Program explanation]

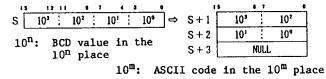
- . Binary data of H001289AB which is set in DR0030 is converted to an ASCII.
- . The conversion result is set in WR0032 to WR0036.

Execution result: DR0030 = H001289AB, WR0032 = H3030, WR0033 = H3132, WR0034 = H3839, WR0035 = H4142, WR0036 = H0000

[Precautions]

. When S+1 to S+6 are beyond the maximum I/O number, DER = 1 and no processing is performed.

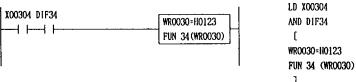
- The 32-bit binary data specified by S (low order) and S+1 (high order) is converted to a 8-digit hexadecimal ASCII code and set in S+2 to S+6.
- . The conversion result is not suppressed to 0.
- . Null behind the ASCII data means the end of character string.
- . When operations are performed normally, DER = 0.
- LD X00303 AND D1F33 [DR0030=16001289AB FUN 33 (WR0030)]



Ladder format		Condition code							E	roce	ssin	g ti	me (µ	s)	Remarks
FUN 34 (S)	R 7F 4	R	7F3	R7F2	R 7F1	R 7FC			H-20	002			H 700	/302	
* (BCDDA (S))	DER	E	RR	SD	v	С	Av	vera	age	Maxi	mum	Ave	rage	Maximum	
	\$	<u> </u>	•	•	•	•									
Command format		1	No.	of st	eps			54	4	7	1	1	10	145	
FUN 34 (S)	C	ondi	itic	ons	St	ep			1						
* (BCDDA (S))		-	-		1	3									
				Bit				Woi	rd		Dou	ble	word		
Usable I/O		x		L, M	CD,SS,WI IS,TMR,G LCU,CT		ix W	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S Argument (BC	CD)								0						S to S+3 are used.

[Name] 16-bit BCD -> Decimal ASCII conversion (BCD to decimal ASCII)

[Function]


Hexadecimal ASCII data

* The contents of () are indications when the ladder editor is used.

- . The 16-bit BCD data specified by the argument S is converted to a 4-digit decimal ASCII code and set in S+1 to S+3.
- The conversion result is suppressed to 0 and the digits are H20 (space).
- Null behind the ASCII data means the end of character string.
- . When operations are performed normally, DER = 0.

[Program example]

[Program explanation]

. BCD data of H0123 which is set in WR0030 is converted to an ASCII.

. The conversion result is set in WR0031 to WR0033.

Execution result: WR0030 = H0123, WR0031 = H2031, WR0032 = H3233, WR0033 = H0000

[Precautions]

- . When S is other than BCD data, DER = 1 and no processing is performed.
- . When S+1 to S+3 are beyond the maximum I/O number, DER = 1 and no processing is performed.

1

· ···· ····· · ····· · ·····		

Ladd	er format	Condition code								J	Proce	ssin	s)	Remarks			
FUN	35 (S)	R 7F 4	R	7F3	R7F	2	R7F1	R 7.	FO	H-20		002			H-702	/302	
* (D	BCDDA (S))	DER	E	RR	SD		v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	
	•	1	-	•	•		•	•									
Comm	and format			No.	of s	te	ps			7	2	9	2	1	.49	190	
FUN	35 (S)	С	ond	iti	ons		St	ep									
* (D	BCDDA (S))			-			3	3									r
					Bi	t				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	L,	MS	,SS,WI ,TMR,C U,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
S	Argument (low order	·)									0						S indicates BCD data.
S+1	Argument (high orde	r)									0						S to S+6 are used.

[Name] 32-bit BCD -> Decimal ASCII conversion (Double BCD to decimal ASCII)

[Function]

32-bit BCD data 15 12 11 1 4 3S $10^3 10^2 10^1 10^0$

0	10	. 10	, 10	, 10	
S + 1	107	10*	105	104	

10ⁿ: BCD value in the 10ⁿ place S+5

place S+5 10' 10' S+6 NULL

10'

105

103

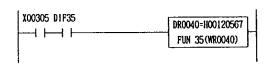
Hexadecimal ASCII data

10^e

104

10²

10^m: ASCII code in the 10^m place


S+2

S + 3

S + 4

* The contents of () are indications when the ladder editor is used.

[Program example]

LD X00305 AND D1F35 [DR0040=H00120567 FUN 35(WR0040)]

[Program explanation]

- . BCD data of H00120567 which is set in DR0040 is converted to an ASCII.
- . The conversion result is set in WR0042 to WR0046.

Execution result: DR0040 = H00120567, WR0042 = H2020, WR0043 = H3132, WR0044 = H3035, WR0045 = H3637, WR0046 = H0000

[Precautions]

- . When S and S+1 are other than BCD data, DER = 1 and no processing is performed.
- . When S+1 to S+6 are beyond the maximum I/0 number, DER = 1 and no processing is performed.

- . The 32-bit BCD data specified by S (low order) and S+1 (high order) is converted to a 8-digit decimal ASCII code and set in S+2 to S+6.
- . The conversion result is suppressed to 0 and the digits are H2O (space).
- . Null behind the ASCII data means the end of character string.

. When operations are performed normally, DER = 0.

	· ··· · · · · · · · · · · · · · · · ·	

Ladder	r format		Condition code							J	Proce	ssin	g ti	me (µ	s)	Remarks	
FUN 36	6 (S)	R 7F 4	R	7F3	R 7E	F2	R 7F1	R 7	FO		H-2	002			H - 702	/302	
* (DAE	BIN (S))	DER	E	RR	SI	D	v	С		Aver	age	Maxi	ສບສ	Ave	rage	Maximum	
		Ì		•	•		•	•									
Comman	nd format		No. of steps		101		123		207		254						
FUN 36	6 (S)	Co	ond	itic	ons		St	ep									
* (DAH	BIN(S))			_			3										
					Bi	lt				Wo	rd		Dou	ble	word		
Us	sable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
	Argument (high orde	r)									0						S to S+2 are combinations of
	Argument (middle or	der)									o						HOO, H2O, and H3O to H39. S to S+2 are used.
	Argument (low order	•)									0						

[Name] Unsigned 5-digit decimal ASCII -> 16-bit binary conversion (Decimal ASCII to binary)

[Function]

Unsigned decimal ASCII data 16-bit binary data

s	104	103
S+1	10²	10'
S + 2	10°	HOO

10ⁿ: ASCII code in the 10ⁿ place

* The contents of () are indications when the ladder editor is used.

[Program example]

1 X00306 D1F36	
X0000 D1100	WR0050=H3132
	WR0051=H3334
	WR0052=H3500
	FUN 36(WR0050)

S + 3

[Program explanation]

. ASCII data 1, 2, 3, 4, and 5 which are set in WR0050 to WR0052 are converted to binary data.

LD X00306

. The conversion results are set in WR0053.

Execution result: WR0050 = H3132, WR0051 = H3334, WR0052 = H3500, WR0053 = 12345 (H3039)

[Precautions]

- When 5-digit ASCII codes which are set in S to S+2 are other than H30 to H39 (0 to 9), DER = 1 and no processing is performed. This is not applied to HOO and H2O (null, space) in digits which are suppressed to 0.
- . When S+1 to S+3 are beyond the maximum I/O number, DER = 1 and no processing is performed.
- . When data is more than 65 536, DER = 1 and no processing is performed.

0 to 65535

- . The unsigned 5-digit decimal ASCII data specified by S (high order), S+1 (middle order), and S+2 (low order) is converted to 16-bit binary data and set in S+3.
- . HOO and H2O (null, space) in the high order positions are processed as H30 (0). (0-suppressed digits)

. When operations are performed normally, DER = 0.

AND DIF36	FUN 36(WR0050)
[1
WR0050=113132	
WR0051=H3334	

WR0052=113500

+

Ladd	er format		Condition code								F	roce	ssin	g ti	me (µ	s)	Remarks
FUN	37 (S)	R7F4	R	7F3	R 7	F2	R7F1	R 7	FO	70 H-20		02			H-702	/302	
* (D)	DABIN (S))	DER	E	RR	S	D	v	С		Aver	age	Maxi	աստ	Ave	rage	Maximum	
		1	+	•	•		•	•									
Comm	nand format No. of steps							15	4	19	3	3	329 413				
FUN	37 (S)	С	ond	iti	ons		St	ep	P								
* (D	* (DDABIN(S)) ~				3												
				Bit						Word D			Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS),SS,WDT, S,TMR,CU, CU,CT		wx	WY	WR, WY WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S	Argument (ASCII cod	le)									0						The sign is HOO or H2D. The other digits
2	2 2				г						are combinations of HOO, H2O, and						
S+5	Argument (ASCII cod	.e)									0						H30 to H39. S to S+7 are used.

[Name] Signed 10-digit decimal ASCII -> 32-bit binary conversion (Double decimal ASCII to binary)

[Function]

Signed ASCII data S Sign : 10⁴

Signed 32-bit binary data S+6 Low-order 16 bits

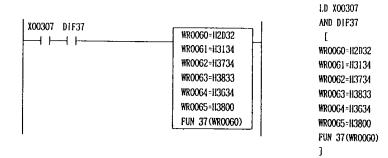
H2D (-):

Positive

Negative

5	er si	10		STU DON OTGET TO STOP
S+1	10"	107]	S+7 High-order 16 bits
S + 2	10 ^e	105		
S + 3	104	103	10 ⁿ :	ASCII code in the 10 ⁿ
S+4	10²	10'] 10 .	place
S + 5	10°	1100]	-
			Sign:	H2C (space): Positiv

- . The signed 10-digit decimal ASCII data specified by the arguments S to S+5 is converted to 32-bit binary data and set in S+7 (high order) and S+6 (low order).
- . The argument is a combination of HOO, H2O, H30 to H39, and H2D (-).
- . HOO and H2O (null, space) in the high order positions are processed as H30 (0). (0-suppressed digits)


. When operations are performed normally, DER = 0.

. Signed data ranges from -2147483648 to 214783647.

* The contents of () are indications when the ladder editor is used.

- . In cases except for that the sign is H2O or H2D and the other digits are H3O to H39 (O to 9), DER = 1 and no processing is performed. This is not applied to HOO and H2O (null, space) in digits which are suppressed to 0.
- . When data is other than -2147483648 to 214783647, DER = 1 and no processing is performed.
- . When S+1 to S+7 are beyond the maximum I/O number, DER = 1 and no processing is performed.

[Program example]

[Program explanation]

- . ASCII data "-", 2, 1, 4, 7, 4, 8, 3, 6, 4, and 8 which are set in WR0060 to WR0065 are converted to binary data.
- . The conversion results are set in WR0067 (high order) and WR0066 (low order).

Execution result:	WR0060 = H2D32	WR0061 = H3134,	, WR0062 = H3734, WR0063 = H3833,	
			, DR0066 = -2147483648 (H8000000	

	· · · · · · · · · · · · · · · · · · ·					
b and .						
[111	1 11 - 1 - 1 1 1 1	ACOTT > 16 Lin	Lizens conversio	- (Have ASCII to	hinary)	
[Name]	4-digit hexadecimal	ASCII -> 10-D10	binary conversio	II (HEXA ASULL LU	Dinary/	

Ladd	er format			Cond	litic	on (code				I	roce	s)	Remarks			
FUN	38 (S)	R7F4	R	7F3	R 7 F	72	R 7F1	1 R 7F0			н-2002				H - 702	/302	
* (H.	ABIN (S))	DER	E	RR	SI	>	V	С		Aver	age	Maxi	աստ	Ave	rage	Maximum	
		1		•	1.		•	•									
Сопл	and format	No. of steps						81 102			2	168		214			
FUN	38 (S)	Co	ond	itio	ons		St	ep									
* (H	* (HABIN (S)) - 3																
	Usable I/O			Bit						Word Do			Dou	ouble word			
ł			x	Y		MS	D,SS,WDT, S,TMR,CU, CU,CT		WX	WY WR, WY WL, WM		тс	DX	DY	DR, DL, DM	Constant	Other
S	Argument (high orde ASCII data							ľ			0						Combinations of HOO, H2O, H3O to H39, and H41 to H46
S+5	Argument (low order ASCII data										0						S to S+2 are used.

[Function]

Hexadecimal ASCII data 16-bit binary data

16ⁿ: ASCII code in the 16ⁿ place

- * The contents of () are indications when the ladder editor is used.
- --- [Program example]

[Program explanation]

- . ASCII data 1, 2, A, and B which are set in WR0070 and WR0071 are converted to binary data.
- . The conversion results are set in WR0072.

Execution result: WR0070 = H3132, WR0071 = H4142, WR0072 = H12AB

[Precautions]

- . When 4-digit ASCII codes which are set in S and S+1 are other than H30 to H39 and H41 to H46, DER = 1 and no processing is performed. This is not applied to H00 and H20 (null, space) in digits which are suppressed to 0.
- . When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.

- . The 4-digit hexadecimal ASCII data specified by the arguments S and S+1 is converted to binary data and outputted to S+2.
- H00 and H20 (null, space) in the high order positions are processed as H30 (0). (0-suppressed digits)
- The argument is a combination of H3O to H39 and H41 to H46 (O to 9, A to F).
- . When operations are performed normally, DER = 0.

LD X00308 AND D1F38 [WR0070=H3132 WR0071=H4142 FUN 38(WR0070)]

		ł
		-
 ······	· · · · · · · · · · · · · · · · · · ·	

Ladd	er format		Condition code								roce	s)	Remarks			
FUN	39 (S)	R7F4	R7F	3 R7	F2	2 R7F1 R7F0)	н·		н-2002			н-702	/302	
* (D	HABIN (S))	DER	ERR	S	D	v	С	A	lvera	age	Maximum		Average		Maximum	
		ţ	•	•		•	•									
Command format No. of steps							110	6	14	2	244		298			
FUN	39 (S)	Co	ndit	ons		St	ep									
* (DHABIN (S))			-			3										
				Bit					Word			Double word				
	Usable I/O		x y	R, L, M	MS,),SS,WDT, S,TMR,CU, CU,CT		ıx	WY WR, WY WL, WM		тс	DX	DY	DR, DL, DM	Constant	Other
S	Argument (ASCII data	a)								o						Combinations of HOO, H2O, H3O to H39, and H41
ې	5 5			5		2					to H49					
S+3	Argument (ASCII data	a)								0						S to S+5 are used.

[Name] 8-digit hexadecimal ASCII -> 32-bit binary conversion (Double hexa ASCII to binary)

[Function]

Hexadecimal ASCII data

S

S+1

S+2

S + 3

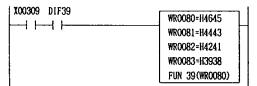
32-bit binary data

S+4 Low-order 16 bits

164 S+5 High-order 16 bits 161 H00000000 to HFFFFFFFF 16°

16' 16ⁿ: ASCII code in the 16ⁿ place

* The contents of () are indications when the ladder editor is used.


16*

[Program example]

16'

165

163

[Program explanation]

. ASCII data F, E, D, C, B, A, 9, and 8 which are set in WR0080 to WR0083 are converted to binary data. The conversion results are set in WR0084 and WR0085.

LD

Execution result: WR0080 = H4645, WR0081 = H4443, WR0082 = H4241, WR0083 = H3938, DR0084 = HFEDCBA98

- . When 8-digit ASCII codes which are set in S and S+3 are other than H30 to H39 and H41 to H46, DER = 1 and no processing is performed. This is not applied to HOO and H2O (null, space) in digits which are suppressed to 0.
- . When S to S+5 are beyond the maximum I/O number, DER = 1 and no processing is performed.

- . The 8-digit hexadecimal ASCII data specified by the arguments S to S+3 is converted to binary data and outputted to S+4 and S+5.
- . HOO and H2O (null, space) in the high order positions are processed as H30 (0). (0-suppressed digits)
- . The argument is a combination of H30 to H39 and H41 to H46 (0 to 9, A to F).
- . When operations are performed normally, DER = 0.

LD X00309	WR0083=113938
AND DIF39	FUN 39(WR0080)
[1
WR0080=H4645	
WROO81=14443	
WR0082=H4241	

	 · · · · · · · · · · · · · · · · · · ·
	 · · · · · · · · · · · · · · · · · · ·

La	adder format	format Condition code										Processing time (µs)								
FL	UN 40 (S)	R7F4	R	7F3	R7F2	2 R7F1 R7F0		'FO	н-2002					H 702	/ 302	•••				
*	(DABCD (S))	DER	E	RR	SD	v	C	:	Aver	age	Maximum		Average		Maximum					
		ţ		•	•	1.	1.		· · ·											
Co	ommand format]	No.	of st	steps			51		56		107		117					
FL	UN 40 (S)	Co	ond	itic	ns	s	tep													
*	(DABCD (S))			-			3									······				
					Bit				₩o	rd		Dou	ble	word	:					
-	Usable I/O		x	Y	L, M	D,SS,W S,TMR, CU,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other				
S	Argument (ASCII dat	a)								0						Combinations of HOO, H2O, and H3O to H39				
Si	5+1 Argument (ASCII data)				o						S to S+2 are used.									

[Name] 4-digit decimal ASCII -> 16-bit BCD conversion (Decimal ASCII to BCD)

[Function]

Decimal ASCII data 16-bit BCD data

10^m: ASCII code in the 10^m place 10ⁿ: BCD code in the 10ⁿ place

- * The contents of () are indications when the ladder editor is used.
- [Program example]

X00400 DIF40		
	WR0090=H2020	
	WR0091=113031	
	FUN 40(WR0090)	

- [Program explanation]
 - ASCII data し, し, 0, and 1 which are set in WR0090 and WR0091 are converted to 16-bit BCD data. The conversion results are set in WR0092. (レ = H20)

Execution result: WR0090 = H2020, WR0091 = H3031, WR0092 = H0001

[Precautions]

- When 4-digit ASCII codes which are set in S and S+1 are other than H30 to H39, DER = 1 and no processing is performed. This is not applied to H00 and H20 (null, space) in digits which are suppressed to 0.
- . When S+1 and S+2 are beyond the maximum I/0 number, DER = 1 and no processing is performed.

- The 4-digit decimal ASCII data specified by the arguments S and S+1 is converted to 16-bit BCD data and set in S+2.
- HOO and H2O (null, space) in the high order positions are processed as H3O (0). (0-suppressed digits)
- The argument is a combination of H3O to H39 (O to 9).
- When operations are performed normally, DER
 = 0.

LD X00400 AND DIF40 [WR0090=1/2020 WR0091=1/3031 FUN 40(WR0090)]

Ladd	ler format	Condition code								Proce	essin	g ti	me (µ	is)	Remarks
FUN	41 (S)	R7F4	F	R7F3	R7F2	R7F1	R7F1 R7F0		н-2002			H-702/302			
* (D	DABCD (S))	DER	I	ERR	SD	v	с	C Ave		Maxi	Maximum		rage	Maximum	
		1		•	•	•	•					1			
Comm	and format			No.	of steps				82 90		0	173		191	
FUN	41 (S)	С	ond	iitid	ons	St	Step								
* (D	DABCD (S))			-		3	}					<u> </u>			
					Bit			1	word		Dou	ble	word		
	Usable I/O		X	Y	L, M	D,SS,WE S,TMR,C CU,CT		x w	WR, WL, WM		DX	DY	DR, DL, DM	Constant	Other
S	Argument (ASCII dat	a)							0						Combinations of HOO, H2O, and H3O to H39
s+3	Argument (ASCII dat	a)							0						

[Name] 8-digit decimal ASCII -> 32-bit BCD conversion (Double decimal ASCII to BCD)

[Function]

Decimal ASCII data 32-bit BCD data 12 11 . 7 4 3 S + 4 10³ 10² 10¹ 10⁰ S 107 10 ⇔ S+1 10^s 104 S+5 10' 10" 10" 104

10² S + 2 103 10° S + 3 101

> 10^m: ASCII code in the 10^m place

* The contents of () are indications when the ladder editor is used.

[Program example]

00401 DIF41	WR00A0=113938
1 h1 h	WR00A1=H3736
	WR00A2=113534
	WR00A3=H3332
No.	FUN 41 (WROOAO)

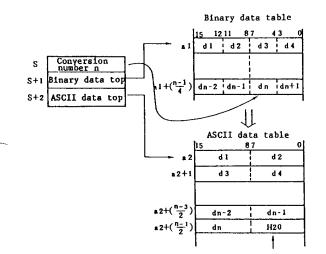
[Program explanation]

. ASCII data 9, 8, 7, 6, 5, 4, 3, and 2 which are set in WR00A0 to WR00A3 are converted to 32-bit BCD data. The conversion results are set in WR00A4 and WR00A5.

Execution result: WR00A0 = H3938, WR00A1 = H3736, WR00A2 = H3534, WR00A3 = H3332, DR00A4 = H98765432

- When 8-digit ASCII codes which are set in S to S+3 are other than H30 to H39, DER = 1 and no processing is performed. This is not applied to HOO and H2O (null, space) in digits which are suppressed to 0.
- When S to S+5 are beyond the maximum I/0 number, DER = 1 and no processing is performed.

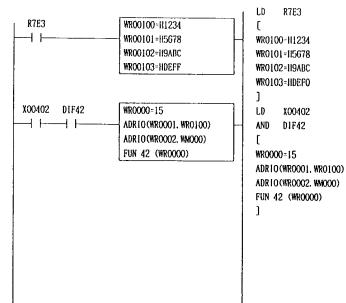
- . The 8-digit decimal ASCII data specified by the arguments S to S+3 is converted to 32-bit BCD data and set in S+4 (low order) and S+5 (high order).
- . HOO and H2O (null, space) in the high order positions are processed as H30 (0). (0-suppressed digits)
- . The argument is a combination of H3O to H39 (0 to 9).
- . When operations are performed normally, DER = 0.


LD X00401	WROOA3=113332
AND DIF41	FUN 41 (WRODAD)
C]
WR00A0=113938	
WROOA1=H3736	
WR00A2=113534	

Ladd	adder format Condition code										F	roce	ssin	g ti	me (µ	s)	Remarks
FUN	42 (S)	R7F4	R	7F3	R7E	2	R7F1	R7F	0	H-2002			н-702/302			10-character conversion	
* (A	sc (s))	DER	EF	RR	SI	D	v	С		Aver	age	Maxi	ໝັ້	Ave	rage	Maximum	Conversion
	1			•	•		•	•									
Comm	mmand format No. of steps								281 568								
FUN	42 (S)	Co	ond	itio	ons		St	ep									
* (A	* (ASC (S)) - 3																
				Bit						Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS	D,SS,WDT, S,TMR,CU, WX CU,CT			WY	WR, WL, WM	ŤC	DX	DY	DR, DL, DM	Constant	Other
S	No. of con sion chara										0						S to S+2 are used.
S+1	S+1 Binary data top I/O No.					0						The real address is set.					
S+2	S+2 Conversion ASCII top I/0 No.			0						The real address is set.							

[Name] Hexadecimal binary -> Hexadecimal ASCII conversion (Binary to ASCII)

[Function]



- . The characters specified by S from the top I/0 of the hexadecimal binary data specified by S+1 are converted to hexadecimal ASCII codes and set starting with the top I/0 specified by S+2.
- . When the number of characters is odd, the low-order 8 bits of the data of the output destination is H2O (space).
- . Set the real addresses in the top I/O of S+1 and S+2 using the ADRIO instruction. Example: ADRIO (S+1, data top I/O)
- . When operations are performed normally, DER = 0.

* The contents of () are indications when the ladder editor is used.

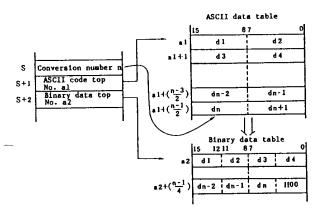
- . Set the real addresses in S+1 and S+2 using the ADRIO instruction. When any other addresses are set, DER = 1 and no processing is performed.
- When S to S+2 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- . When S to S+2 or the areas specified by S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.

[Program example]

[Program explanation]

- Data is set in the data tables WR0100 and the following by the special internal output R7E3 (1 scan is turned ON after the running starts).
- 2) A hexadecimal number is converted to a hexadecimal ASCII at the leading edge of X00402 and the converted data is set in WM000 and the following.

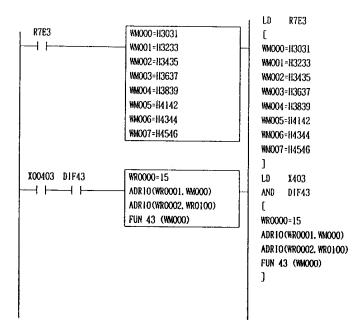
Execution	result:	WR0100=111234		WM000=H3132,	WM001=113334
		WR0101=H5678	⇔	WM002=H3536.	WM003=113738
		WR0102=119ABC	\$	WMOO4=H3941.	WM005=114243
		WRO103=HDEFF		WMOOG=H4445.	WM007=1146 20
					· • •
					Space



Ladder	adder format Condition code									F	roce	ssin	g ti	me (µ	s)	Remarks
FUN 43	3 (S)	R7F4	R	7F3	R7F2	2 R 7 F 1	R7F	0	H-2002]	H-702	/302	10-character conversion
* (HEX	(s))	DER	ERR	RR	SD	V	с		Aver	verage N		ດເຫ	Average		Maximum	
		1	-	•	•	•	•			4						
Comman	ommand format No. of steps							195 370					1			
FUN 43	FUN 43 (S) Conditions Step															
* (HE)	(HEX (S)) – <u>3</u>			3		ll										
			Bit						Word Dou			Dou	ble word			
U	sable I/O		x	Y	L, 1	ID,SS,W MS,TMR, RCU,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
	No. of con sion chara									o						S to S+2 are used.
	1 ASCII code top I/O No.				o						The real address is set.					
S+2 Conversion binary data top I/O No.			o						The real address is set.							

[Name] Hexadecimal ASCII -> Hexadecimal binary conversion (ASCII to binary)

[Function]


beginning of the hexadecimal ASCII code specified by S+1 are converted to binary data and set starting with the top I/O specified by S+2.

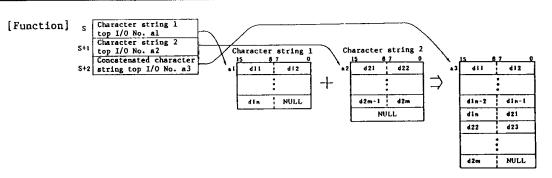
. The characters specified by S from the

- . When the number of characters is odd, the data of low-order 4 bits of the output destination is 0.
- Set the real addresses in the top I/O of S+1 and S+2 using the ADRIO instruction. ADRIO (S+1, data top I/O)
- . HOO and H2O (null, space) in the high order positions are processed as H3O (0). (0-suppressed digits)
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

- . Set the real addresses in S+1 and S+2 using the ADRIO instruction. When any other addresses are set, DER = 1 and no processing is performed.
- . When S to S+2 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- . When S to S+2 or the areas specified by S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.

[Program example]

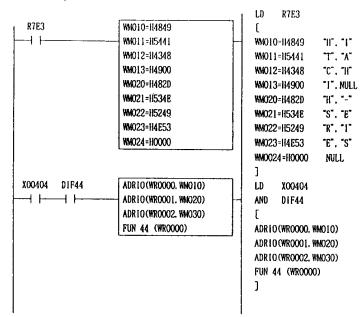
[Program explanation]


- Data is set in the data tables WM000 and the following by the special internal output R7E3 (1 scan is turned ON after the running starts).
- 2) A hexadecimal ASCII is converted to a hexadecimal binary number at the leading edge of X00403 and the converted data is set in WR0100 and the following.

Execution result:	WM000=H3031, WM002=H3435,	WM003=H3637	Ŷ	WR0100=110123 WR0101=114567
	WM004=H3839,	WM005=H4142	~	WR0102=1189AB
	WM006=114344,	WM007=H4546		WR0103=HCDE0

[Name] Character string concatenation

Ladd	er format			Cond	lition	code				P	roce	ssing	Remarks			
FUN	FUN 44 (S)		R7F3 R7F2		R7F1	R7F	0	II-2002			H-702/302			10 characters + 10 characters		
* (S	* (SADD (S))		E	RR	SD	v	С	:	Avera	ge	Maximum		Average		Maximum	-> 20 characters
		\$		•	•	•	•									
Comm	Command format		No. of steps						261			514				
FUN	44 (S)	Conditions					tep									
* (S	* (SADD (S))			-		3										
	Usable I/O		Bit						Word Dou				ble word			
			X Y R, TD,SS, X Y L, MS,TMR M RCU,CT					wx	WY I	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S	S Character string 1 top I/O No.					<u>.</u>				0						The real addresses are set in S to S+2.
S+1	Character string 2 t I/O No.	op								0						
S+2	Concatenat character string top No.									0						



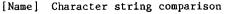
- . The character string starting with the top I/O specified by S is concatenated with the character string starting with the top I/O specified by S+1 and set in the top I/O area specified by S+2.
- . The character string to be concatenated is assumed to end prior to null (HOO).
- . Null is set behind the concatenated character string.
- . Set the real addresses in the top I/O of S to S+2 using the ADRIO instruction.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

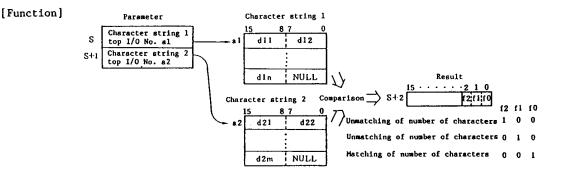
[Precautions]

- When S to S+2 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- When S to S+2 or the areas specified by S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.
- Set the real addresses in S to S+2 using the ADRIO instruction. When any other addresses are set, DER = 1 and no processing is performed.

[Program example]

=UN 44 [SADD)

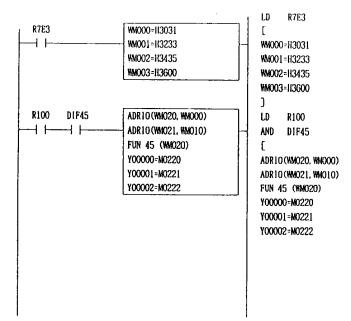

[Program explanation]


- 1) WM010 or the first character string and WM020 or the second character string are set using the special internal output R7E3 (1 scan is turned ON after the running starts).
- 2) The character strings are concatenated at the leading edge of X00404 and outputted to WM030 and the following.

Execution	result:	WM010=H4849		WM020=H482D		WM030=114849
		WM011=H5441	1	WM021=H534E	⇔	WM031=H5441
		WM012=H4348	+	WM022=H5249	4	WM032=H4348
		WM013=H4900		WM023=H4E53		WM033=114948
				WM024=H0000		WM034=112D53
						WM035=114E52
						WM036=11494E
						WM037=115300

•	 	
L	 	 ······

Ladd	Ladder format Condition code Processing time (µs)										Remarks						
FUN 45 (S) * (SCMP (S))		R7F4	R	7F3	R7F2		R7F1	R7F0)	II-2002				H-702/302			10 characters
		DER	E	ERR	SD	D	v	с		Average		Maximum		Average		Maximum	are compared with 10 characters.
		1		•			• •									characters.	
Command format			No. of steps							239			486				
FUN 45 (S)		Co	ond	nditions Step													
* (SCMP (S))				-		3											L
			Bit						Word Dou				ible word				
Usable I/O			x	Y	R, L, M	MS,),SS,WDT, S,TMR,CU, CU,CT		łΧ	WY	WR, WL, WM	тc	DX	DY	DR, DL, DM	Constant	Other
S Character string 1 top I/O No.		ор									0						The real addresses are set in S and S+1.
S+1 Character string 2 top I/O No.		ор									o						S to S+2 are used.



- . The character string starting with the top I/O specified by S is compared with the character string starting with the top I/O specified by S+1 and the result is set in S+2.
- . The character string to be compared is assumed to end prior to null (HOO).
- . Set the real addresses in the top I/O of S and S+1 using the ADRIO instruction.
- . The character strings are compared with each other in unmatching of the number of characters. When the numbers of characters are not matched with each other, 1 is set in bit 2. When they are matched, the character strings are compared with each other. When the character strings are not matched with each other, 1 is set in bit 1. When the numbers of characters and the character strings are matched respectively, 1 is set in bit 0.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

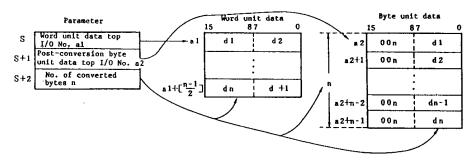
[Precautions]

- Set the real addresses in S and S+1 using the ADRIO instruction. When any other addresses are set, DER = 1 and no processing is performed.
- When S and S+1 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- When S+2 or the areas specified by S and S+1 are beyond the maximum I/O number, DER = 1 and no processing is performed.

[Program example]

FUN 45 SCMP

[Program explanation]


- 1) The comparison data is set in WMOOO and the following using the special internal output R7E3 (1 scan is turned ON after the running starts).
- 2) The data of WM000 and the following is compared with the data of WM010 and the following at the leading edge of R100.
- 3) Y0000 to Y00002 are turned ON depending on the results.

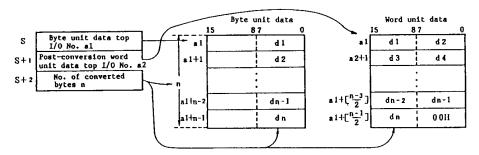
1		
· · · · · · · · · · · · · · · · · · ·		

Ladd	er format		Con	dition	code			Ŧ	roce	ssin	g ti	me (µ	s)	Remarks	
FUN	46 (S)	R 7F4	R 7F 3	R7F2	R7F1	R7F0		H-20	02		H-702/302			5 words -> 10 bytes	
* (W	TOB (S))	DER	ERR	SD	v	с	Aver	age	Maxi	mum	Ave	rage	Maximum	(words)	
		1	•	•	•	•		ł							
Comm	and format		No.	of st	eps	.	1	15	56			3	13		
FUN	46 (S)	Co	onditi	ons	St	ер									
* (W	TOB (S))		_		:	3								· • · · · · · · · · · · · · · · · · · ·	
				Bi t	:		Wa	rd		Dou	ble	word			
	Usable I/O		х ү	L, N	TD,SS,WI 1S,TMR,G RCU,CT	DT, CU, WI	K WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other	
S	Word data I/O No.	top						o						The real addresses are set in S and	
S+1	Byte conve sion data I/O No.							ο						S+1.	
S+2	No. of con verted byt							0						S to S+2 are used.	

[Name] Word unit -> Byte unit conversion (Conversion words to bytes)

[Function]

- . The word character string data of the top I/O specified by S is split byte by byte for the number of bytes specified by S+2 and set in the top I/O area specified by S+1.
- . Set the real addresses in the top I/O of S and S+1 using the ADRIO instruction.
- . HOO is set in the high-order bytes of each split data.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.


- Set the real addresses in S and S+1 using the ADRIO instruction. When any other addresses are set, DER = 1 and no processing is performed.
- . hen S to S+2 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- . When S+1 and S+2 or the areas specified by S to S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.

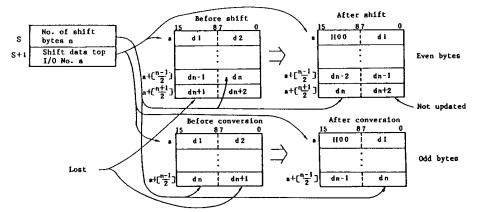
· · · · · · · · · · · · · · · · · · ·	 	
 · · · · · · · · · · · · · · · · · · ·	 	
 	 · · · · · · · · · · · · · · · · · · ·	

Ladder form	at		(Cond	litio	on d	code				Р	roce	ssin	g ti	me (µ	s)	Remarks	
FUN 47 (S)	R	t7F4	R	7F3	R7F2		R7F1	R 71	FO		H-20	02			H-702	/302	10 bytes (words) -> 5 words	
* (BTOW (S))) [I	DER	E	RR	SI	>	V	С		Aver	age	Maxi	.mum	Ave	rage	Maximum	-> J words	
		1	Ì	•	•		•	•			i							
Command for	mat		No. of steps					151 304						04				
FUN 47 (S)		Co	ond	litions Step														
* (BTOW (S)	00 F			-			3	5										
	-				Bi	lt.			Word		d		ble word					
Usable	1/0		x	Y	L,	MS	,SS,WI ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other	
S Byte u top I/	mit da 'O No.	ita									0						The real addresses are set in S and	
S+1 Word u top I/	init da 0 No.	ata									0						S+1.	
S+2 No. of	E con- 1 bytes	5									0						S to S+2 are used.	

[Name] Byte unit -> Word unit conversion (Conversion bytes to words)

[Function]

- . The byte unit character string data in the number of bytes specified by S+2 is combined word by word from the data of the top I/O specified by S and set in the top I/O area specified by S+1.
- . The high-order bytes of the byte unit data are ignored.
- . When the number of converted bytes is odd, the low-order 8 bits at the end of the output destination are HOO.
- . Set the real addresses in the top I/0 of S and S+1 using the ADRIO instruction.
- * The contents of () are indications when the ladder editor is used.


- Set the real addresses in S and S+1 using the ADRIO instruction. When any other addresses are set, DER = 1 and no processing is performed.
- When S to S+2 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- . When S+1 and S+2 or the areas specified by S to S+2 are beyond the maximum I/0 number, DER = 1 and no processing is performed.

[Name] Byte right shift

Ladd	er format	-		Condition code							F	roce	ssin	g ti	.me (µ	is)	Remarks
FUN	48 (S)	R7F4	R	.7F3	R7	F2	R7F1	R 71	FO		н-20	02	-		H-702	2/302	10 characters are shifted one
* (B	SHR (S))	DER	E	RR	S	D	v	С		Aver	age	Maxi	מטמ	Ave	rage	Maximum	byte position.
		1	1	•	•		•	•			1						
Comm	and format			No.	of	ste	ps				14	5			2	.94	
FUN	48 (S)	С	ond	iti	ons		St	ер									
* (B	SHR (S))			-			3	}									
			_		В	it				Wo	rd		Dou	ble	word		
	Usable I/O		x	Y	R, L, M	MS	,SS,WE ,TMR,C U,CT		WX	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S	No. of shi bytes	ft									o						
S+1	Shift data I/O No.	top									0						The real address is specified.
																	S and S+1 are used.

[Function]

- . The data in the number of bytes specified by S is shifted right one byte position from the top I/O data specified by S+1.
- . In the empty area after shifting, HOO is set. The next data of the specified number of bytes is lost by shifting.
- . Set the real address in the top I/O of S+1 using the ADRIO instruction.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

[Precautions]

- . Set the real address in S+1 using the ADRIO instruction. When any other address is set, DER = 1 and no processing is performed.
- When S and S+1 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- . When S+1 or the areas specified by S and S+1 are beyond the maximum I/O number, DER = 1 and no processing is performed.

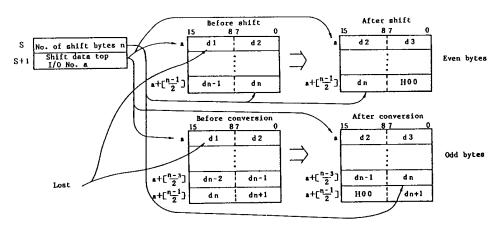
[Program example]

ÐJF48	WR0100=4 ADR10(WR0101.WN0100) FUN 48 (WR0100) WM100=WM100 OR H0200	LD X00408 AND D1F48 [WR0100=4 ADRIO(WR0101.WM0100) FUN 48 (WR0100) WM100=WM100 OR IK0200]

BSHR)

[Program explanation]

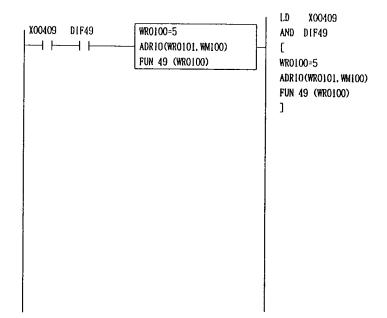
• 4-byte transmission data is stored in WM100 and the following. A communication control code of HO2 (STX) is added at the beginning of the data.


Execution result:

[Name] Byte left shift

Ladder format			Cond	litio	n code				P	roce	ssin	g tin	oe (µ	s)	Remarks
FUN 49 (S)	R7F4	R	.7F3	R7F	2 R7F1	R71	FO		H-20	02		1	H -70 2	/ 302	10 characters
* (BSHL (S))	DER	E	RR	SD	v	С		Avera	age	Maxi	อนต	Ave	rage	Maximum	
	1	1	•	•	•										
Command forma	t		No.	ofs	teps	•			15	9			3	06	
FUN 49 (S)	c	ond	litio	ons	S	tep									
* (BSHL (S))			-			3									
				Bi	t			Wo	rd		Dou	ble	word		
Usable I/	0	x	Y	L,	TD,SS,W MS,TMR, RCU,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S No. of s bytes	hift								0						
S+1 Shift da I/O No.	ita top								0						The real address is specified.
	<u></u>														S and S+1 are used.

[Function]



- The data in the number of bytes specified by S is shifted left one byte position from the top I/O data specified by S+1.
- . In the empty area after shifting, HOO is set. The next data of the specified number of bytes is lost by shifting.
- . Set the real address in the top I/O of S+1 using the ADRIO instruction. ADRIO (S+1, data top I/O)
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

[Precautions]

- . Set the real address in S+1 using the ADRIO instruction. When any other address is set, DER = 1 and no processing is performed.
- When S and S+1 or the areas specified by them are overlapped, DER = 1 and no processing is performed.
- When S+1 or the areas specified by S and S+1 are beyond the maximum I/O number, DER = 1 and no processing is performed.

[Program example]

BSHL)

[Program explanation]

• 5-byte data with a control code is stored in WM100 and the following. The control code is removed from each data and only the data forms a data string.

Execution result:

WM100	HO2			WM100	" T"	"E"
WM101	"E"	"X"	Ŷ	WM101	"X"	T
WM102	-t-			WM102	1100	

r	 	 	

[Name] Sampling trace set

Ladder format			Cond	litio	n code				ł	roce	ssin	g ti	me (µ	s)	Remarks
FUN 50 (S)	R7F4	R	7F3	R7F	2 R7F1	R7	FO	н-2002 н-702					H - 702	/ 302	Relevant instructions
* (TRSET (S))	DER	E	RR	SD	v	С		Aver	age	Maxi	mum	Ave	rage	Maximum	FUN 51 (S) FUN 52 (S)
	•	-	•	•	•	•									FUN 32 (3)
Command format	-	H	No.	of s	teps										
FUN 50 (S)	c	ond	litio	ons	S	tep									
* (TRSE1 (S))		•	-			3									
······				Bi	t			Wo	rd		Dou	ble	word		
Usable I/O		x	Y	L,	TD,SS,W MS,TMR, RCU,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S Argument (du constant)	ummy								0						

[Function]

- . The CPU instruction tracing is in the sampling execution enable state.
- . When the instruction sampling is put into the execution state, the special internal output R7FD (sampling status) is turned ON.
- . The instruction sampling is an end trigger function. When the sampling trace reset instruction (FUN52(S)) is normally executed, the special internal output R7FC (trigger matching flag) is turned ON. When the sampling trace set instruction is executed, the special internal output R7FC is turned OFF.
- * The contents of () are indications when the ladder editor is used.

- . The special internal outputs R7FC (trigger matching flag) and R7FD (sampling status) are stored when the power fails.
- . The word I/O (WR, WL, WM) specified by the argument (S) is used as a system area. Allocate one word to it. The word I/O (WR, WL, WM) specified as an argument (S) is not affected.

[Name] Sampling trace execution

Ladder format			Con	diti	on	code				1	Proce	ssin	g ti	.me (µ	s)	Remarks
FUN 51 (S)	R7F4	4 F	17F3	R7	'F2	R7F1	R7	FO	н-2002					H-702	/302	Relevant instructions
* (TRASE (S))	DER	F	ERR	S	D	v	V C			age	ige Maximum		Average		Maximum	FUN 50 (S) FUN 52 (S)
	•		•	•		•	•									FON 32 (3)
Command format		•	No.	of	ste	ps										
FUN 51 (S)		Cond	liti	ons		St	ер									
* (TRASE (S))			-			3	3									
				B	lit				Wo	Word Doub			ble	word		
Usable I/O		x	Y	R, L, M	MS		SS,WDT, TMR,CU, WX J,CT			WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S Argument (d constant)	unmy									0						

[Function]

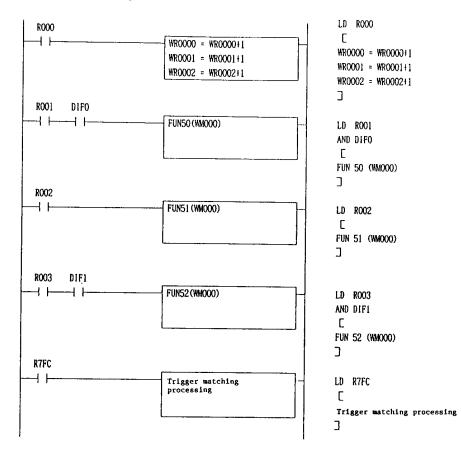
- . The set sampling trace data is sampled.
- . When the instruction sampling is put into the execution state, the special internal output R7FD (sampling status) is turned ON.
- \star The contents of () are indications when the ladder editor is used.

- . The special internal outputs R7FC (trigger matching flag) and R7FD (sampling status) are stored when the power fails.
- . The word I/O (WR, WL, WM) specified by the argument (S) is used as a system area. Allocate one word to it. The word I/O (WR, WL, WM) specified as an argument (S) is not affected.

 · · · · · · · · · · · · · · · · · · ·	

[Name] Sampling trace set

Ladder format			Cond	lition	code				I	Proce	ssin	s)	Remarks		
FUN 52 (S)	R7F4	4 1	R7F3	R7F2	R7F1	R7F(5	H-2002					н-702	:/302	Relevant
* (TRRES (S))	DER	1	ERR	SD	v	С	1	Avera	verage Maximum		n Average		Maximum	instructions FUN 50 (S)	
	1		•	•	•	•									FUN 51 (S)
Command format			No.	of ste	eps										
FUN 52 (S)	6	Cond	litic	ons	St	ep									
* (TRRES (S))			-			3									
	_			Bit	•			Word Do			Dou	ble	word		
Usable I/O		x		L, M),SS,WI S,TMR,C CU,CT		٧X	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S Argument (d constant)	ummy								0						_

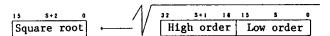

[Function]

- . The CPU instruction tracing is in the sampling execution disable state.
- . When the instruction sampling is put into the execution state, the special internal output R7FD (sampling status) is turned ON.
- . The instruction sampling is an end trigger function. When the sampling trace reset instruction (FUN52(S)) is normally executed, the special internal output R7FC (trigger matching flag) is turned ON.
- \star The contents of () are indications when the ladder editor is used.

- . The special internal outputs R7FC (trigger matching flag) and R7FD (sampling status) are stored when the power fails.
- The word I/O (WR, WL, WM) specified by the argument (S) is used as a system area. Allocate one word to it. The word I/O (WR, WL, WM) specified as an argument (S) is not affected.

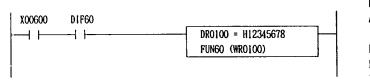
[Program example]

. When WR0002 is sampled from I/O WR0000


[Program explanation]

- 1) The I/O type and number to be sampled from the peripheral equipment (ladder editor) are set in the CPU.
- 2) The CPU is operated.
- 3) When the contact ROOO is forced to be set, the status of the I/O to be sampled hereafter changes.
- 4) When the I/O status is sampled according to the sampling data (I/O type and number) which is set by the peripheral equipment, the sampling trace set instruction is activated by forcing the contact ROO1 to set and the sampling enable status is set.
- 5) When the contact R002 is forced to be set, the sampling trace instruction is executed and the I/O status is sampled in the sampling buffer which is set by the peripheral equipment.
- 6) When the sampling is finished, the sampling trace reset instruction is executed by forcing the contact R3 to set and the I/O status is not sampled even if the sampling trace instruction is activated.
- For further details, refer to the ladder editor operation manual.

[Name] Binary square root


Ladde	er format		(Cond	ition	code				Р	roce	ssin	g tin	ne (µ	s)	Remarks
FUN 6	50 (S)	R7F4	4 R7F3 R7F2 R7F1 R7F0							H-20	02		J	/ 302		
* (BS	SQR (S))	DER	E	RR	SD	v	V C		Average		Maximum		Average		Maximum	
	r	1	<u>†</u>	•	•	•	•									
Comma	and format		1	No.	of st	eps			168 185			5	3	12	Maximum 382 Constant	
FUN (60 (S)	Co	ond	itic	ons	St	сер									
* (BS	SQR (S))			-			3									
					Bit				Word Dou					word		
ι	Usable I/O		x		L, M	D,SS,WI S,TMR,G CU,CT		wx	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
s	Argument (low order	.)								o						
S+1	Argument (high orde	er)								0						S to S+2 are used.

[Function]

- . The square root of the 32-bit binary value specified by S (low order) and S+1 (high order) is calculated and the result is set in S+2.
- . When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

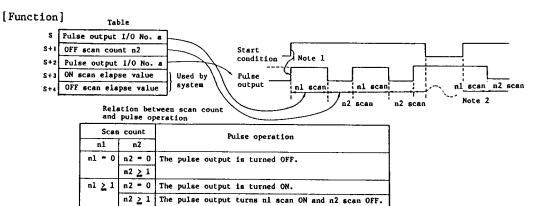
[Program example]

LD X00600 AND D1F60 [DR0100 = H12345678 FUN60 (WR0100)]

[Program explanation]

- . 32-bit binary data H12345678 is set in WR0100 and WR0101.
- . The operation result is set in WR0102.

```
Result: DR0100 = H12345678
WR0102 = H4444(17476)
```


[Precautions]

. When S+1 and S+2 are beyond the maximum I/O number, DER = 1 and no processing is performed.

Ladd	ler format			Cond	litio	n code]	Proce	essin	g ti	.me (µ	s)	Remarks
FUN	61 (S)	R7F	4	R7F3	R7F	2 R7F1	R7	'FO		H-20	002			H-702	/302	
* (F	GEN (S))	DER	- .	ERR	SD	v	V C		Average		Maximum		Average		Maximum	
		Ĵ		•	•	•	•									
Comm	and format			No.	of si	teps		11	.7	15	1	2	234 304			
FUN	61 (S)	(Con	ditio	ons	St	ep									
* (P	GEN (S))	-		-		3	3									
					Bit	<u> </u>		Word Double word						++		
	Usable I/O		х		L, 1	TD,SS,WD 4S,TMR,C ACU,CT		wx	WY	WR, WL, WM	тс	DX	DY	DR, DL, DM	Constant	Other
S	ON scan co	unt								0	1					
S+1	OFF scan c	ount								0						
S+2	Pulse outp I/O	ut			0											The real address is set.
S+3 S+4	System are	a														Cannot be used by the user.

[Name] Dynamic scan pulse instruction (Pulse generating function)

TUN 61 PGEN)

- . The operation that the bit internal output specified by S+2 is turned ON by the scan count specified by S and OFF by the scan count specified by S+1 is repeated.
- . When this instruction is executed several times during one scan, the output is turned ON or OFF depending on the execution count.
- . When both S and S+1 are 0, the output is left OFF.
- . When the start condition is turned OFF, the output and the elapse values of S+3 and S+4 are held.
- When S+3 and S+4 are not cleared at the time of initialization, the pulse width of the first one cycle may be changed.
- . Set the real address in the pulse output I/O using the ADRIO instruction. ADRIO (S+2, bit internal output)
- When operations are performed normally, DER = 0.
- * The contents of () are indications when the ladder editor is used.

- . The pulse output is changed a maximum of one scan behind the start condition. When the start condition is changed from ON to OFF and then to ON halfway, the pulse width during that time is changed <u>+1</u> scan.
- . Set the real address in the pulse output I/O of S+2 using the ADRIO instruction. When any other address is set, no processing is performed.
- When S+1 to S+4 or the area specified by S+2 is beyond the maximum I/O number, DER = 1 and no processing is performed.

L <u></u>		·····	

[Name] Box comment

Ladder format			Con	ditio	on	code				I	Proce	ssin	s)	Remarks		
FUN 254 (S)	R7F4	R	7F3	R71	F2	R7F1	R7F	0	II-2002					H702	/ 302	
* (BOXC (S))	DER	E	RR	SI)	V	C		Average		Maximum		Average		Maximum	
	•		•	•		•	•									
Command format		No. of steps							1.0 +				3	.0	+	
FUN 254 (S)	C	ond	iti	ons		St	ep									
* (BOXC (S))			_			3	}									
				B	Lt				Word Dou			ble	word			
Usable I/O		x	Y	R, L, M	MS	,SS,WD ,TMR,C U,CT		WX	WY	WR, WL, WM	TC	DX	DY	DR, DL, DM	Constant	Other
S Argument (du constant)	IMMY									o						

[Function]

- . This instruction executes nothing but prints comments on the right of the arithmetic box in combination with the ladder editor.
- . The maximum number of comment characters is 32.
- \star The contents of () are indications when the ladder editor is used.

[Name] Memo comments

Ladder format		(Cond	lition	code				F	roce	ssin	g ti	me (µ	s)	Remarks
FUN 255 (S)	R7F4	R7F3 R7F2 R7F1 R7F0							н-20	002			H - 702	/302	
* (MEMC (S))	DER	EI	RR	SD	v	V C			age	Maximum		Average		Maximum	
	•	1	•	•	•	•									
Command format	 	. 1	No.	of ste	eps		1.	0	+		3	.0	+		
FUN 255 (S)	C	onditions Step													
* (MEMC (S))			-		1	3									
				Bit				Word Dou			Dou	ble	word		
Usable I/O		x	Y	L, M		,SS,WDT, ,TMR,CU, WX U,CT			Y WR, WL, TC DX		DX	DY	DR, DL, DM	Constant	Other
S Argument (du constant)	amny								0						

[Function]

. This instruction executes nothing but prints comments between the circuits under the arithmetic box in combination with the ladder editor.

. A maximum of one screen (66 characters by 16 lines) can be used for comments.

* The contents of () are indications when the ladder editor is used.

FUN 254

PID function

The CPU2-**H and CPUP-**H have instructions for PID control. For the outline of the PID function, refer to Section 3.4 of the hardware manual.

(1) PID operation instructions

There are three PID instructions available as shown below.

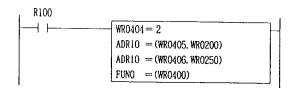
FUN 0 (S) * (PIDIT (S))	Initialization of the PID operation function
FUN 1 (S) * (PIDOP (S))	Execution management of PID operation
FUN 2 (S) * (PIDCL (S))	Execution of PID operation

* The contents of () are indications when the ladder editor is used.

(2) Details of the PID instructions

Details are shown on the next and subsequent pages.

Ladder format			Cond	litio	n code			Processing time (µs)				Remarks				
FUN 0 (S)	R7F4	R	7F3	R7F	2 R7F1	R7	'FO	н-2000 н-700/3		0/300		H-2000, H-700, and H-300 are				
* (PIDIT (S))	DER	E	RR	SD	V	C	:	875 + 146 n		1786 + 300 n			n	and H-300 are only for the CPU of CPUP-**H.		
	•		•	•	•	•									n = Loop count	
Command format			No.	of s	teps			H-2002		H-702/302						
FUN 0 (S)	C	ond	itic	ons		Step		- 730 + 122 n			,	400	1 2/0			
* (PIDIT (S))			-			3		73	-0 -	122 1		1490 + 249 n			n	
· · · · ·				Bi	t				Wor	d		Dou	ble	word		
Usable I/C		x		L,	TD,SS, MS,TMR RCU,CT		wx	WY	WR	WL, WM	тс			Con- stan	Other	
S PID managem table	ent								0							


[Function]

- . FUNO(S) initializes the area for storing the initialization data necessary for PID operations.
- . S of FUNO(S) specifies the WR top No. of the PID management table.
- . When any error is found in the contents shown in the PID management table, an error code is set in Error Code 0 of the PID management table and the area is not initialized.
- . When FUNO is executed once again after the area is correctly initialized (FUNO normal termination (1) of the PID management table) once, an error is caused.
- * The contents of () are indications when the ladder editor is used.

For the PID management table, loop word table, and loop bit table, see Section 3.4(3), "Details of PID management table".

[Precautions]

If a control fault occurs when the area to be used for the PID operation is cleared at the time of operation start or start after power failure, specify Power Failure Storage.

- 1) The loop count is specified as 2.
- 2) The real address of the WR top I/O of
- 3) \int the loop word table area is set.
- 4) The PID area is initialized.

[Program explanation]

The following is a program example that WR0400 and the following of the PID management table are used, the loop count is set to 2, the loop 1 word table area ranges from WR0200 to WR022F (48 words), and the loop 2 word table area ranges from WR0250 to WR027F (48 words).

PID management table

			_
WR0400	Error code O	(R)	
WR0401	Error code 1	(R)	
WR0402	Error code 2	(R)	
WR0403	FUN 0 normal termination	(R)	
WR0404	Loop count	(W)	WR404 = 2
WR0405	Real address of WR top No the loop 1 word table	• of (W)	ADRIO = (WR0405, WR0200)
WR0406	Real address of WR top No the loop 2 word table	• of (W)	ADRIO = (WR0406, WR0250)

When FUNO (WR0400) is executed, the areas from WR0200 to WR022F and from WR0250 to WR027F are checked and initialized.

Ladder format		Со	ndi	ition	code	code			Processing time (μ s)							Remarks
FUN 1 (S)	R7F4	R7F	3	R 7F2	R 7F1	R7F0		H-2000		H-700/300				H-2000, H-700, and H-300 are		
* (PIDOP (S))	DER	ERR		SD	v	с	A	ver	age	Maxi	mum	Ave	rage	Max	imum	only for the CPU of CPUP-**H.
	•	•	-	•	•		\uparrow	<u> </u>		15	5			3	10	of cror-win.
Command format		No	• 0	of st	eps	J			H-2002			H-702/302				
FUN 1 (S)	Co	ondit	ior	ns	St	ер	A	ver	verage Maximum Average		Maximum					
* (PIDOP (S))		_			:	3				12	9			2	.58	
	-1			Bit	-		Word					Dou	uble -	word		
Usable I/O		x Y	: 1	L, M	D,SS,WI S,TMR,G CU,CT		x	WY	WR	WL, WM	тс	DX	DY	DR, DL, DM	Con- stan	1
S PID manageme table top	ent								0							

[Name] PID execution management (PID operation control)

[Function]

- . FUN1(S) reads the PLD execution flag and the PLD constant change flag of the loop bit table area and determines the loop for performing operations.
- . Set the WR top No. of the PID management table in S of FUN1(S). When any other number is set, an error is caused. An error code is set in Error Codes 0 and 1 of the PID management table and FUN1 is not executed.
- . Create a program so that FUN1(S) is executed once during the periodic scan of 20 ms.
- * The contents of () are indications when the ladder editor is used.

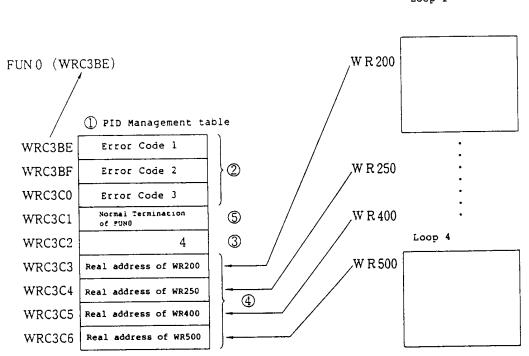
For the PID management table, loop word table, and loop bit table, see Section 3.4 (3), "Details of PID management table".

 	 =	

[Name] PID	calculation
------------	-------------

Ladder format		I	Cond	iitio	on c	code			Processing time (μ s)								Remarks
FUN 2 (S)	R7F4	R	7F3	R 71	F2	R7F1	R7F0	0	H-2000			н-700/300				H-2000, H-700,	
* (PIDCL (S))	DER	E	RR	SI	D	V	с		1900 + 15 n		3590 + 30 n			n	and H-300 are only for the CPU of CPUP-**H.		
	•		•	•		•	•								n = Loop count		
Command format		1	No.	of a	step	s			H-2002 H-702/302								
FUN 2 (S)	C	ond	itio	ons		St	ер		- 1583 + 13 n				2992 + 25 n				
* (PIDCL (S))			-			3			10	0J +	12 1	L	2772 + 25 11			n	
				B	it					Wor	d		Double word				
Usable I/O		x	Y	R, L, M	MS,	SS,WD TMR,C ,CT		WX.	WY	WR	WL, WM	тс	DX	DY	DR, DL, DM	Con- stan	
S Word table t	op									0							

[Function]


- . Whether or not to calculate PID is determined by the sampling time set in each loop word table.
- . FUN2(S) turns the loop PID calculation flag to be calculated ON.
- . Set all the WR top numbers of each PID loop word table by FUN2(S).
- . FUN2(S) checks each loop output upper limit value, lower limit value, set value bit pattern range, and output value bit pattern range. When an error occurs, the FUN2 error flag of the loop bit table is turned ON and an error code is set in Error Code 2 of the PID management table. Even if an error occurs, the FUN2 processing is continued.

. Create a program so that FUN2(S) is executed once during the periodic scan of 20 ms.

 \star The contents of () are indications when the ladder editor is used.

For the PID management table, loop word table, and loop bit table, see Section 3.4 (3), "Details of PID management table".

- (a) FUNO performs the following on respective loop tables (WR200, WR250, WR400, and WR500):
 - Validity check of the address of the top of each loop bit table 11, high output limit 17 to initial value 19, and SV bit pattern 23 to MV bit pattern 25

The result of the check is set in error code 0 (2).

- Initialization of the PID operation area 26 of the loop which passed the validity check
- (b) When all loops (specified by No. of Loops (3) and Top Address of WR of each loop word table) are valid, the "Normal Termination of FUNO" field is set "1". Then, FUN1 and FUN2 start PID operations. When an error occurs in the execution of FUNO, the "Normal Termination of FUNO" field is set "0". The error is set in the "Error Code 0" field (2). Correct the program, then try the FUNO instruction again.
- (c) If the FUNO instruction is executed again after the "Normal Termination of FUNO" fields of all loops are set "1", the instruction abends.

FUN1(S) (Manage PID Execution)

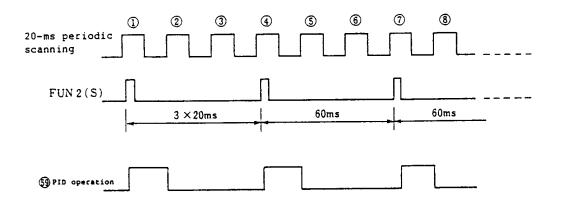
	Functio Managem		D	ER	ERR	SD	v	С		
	_	ecution		•	•	•	•	•		
Instruction format	FUN1(S)]	Numb	er o	f st	eps			
	(2)				3					
I/O type	2. The agai spec Othe	 S must not be an array variable. The WR area specified for S must be protected against unexpected power failures (by the specification of "Power-Off Protection"). Otherwise, the data in the WR area would be all cleared when the power is shut off. 								
	Words	S WX	WY	WR	WL	WM	TC	C	onstant	
				0						

Outline of FUN1(S) processing

The FUN1(S) instruction fetches the Execution flag 50 and the PID Constant Change flag 52 and determines a process loop to be PID-operated. See 3.9.1 "Timing diagrams example 1".

Programming notes

- (a) The content of "S" of the FUN1(S) must be equal to that of "S" of the FUN0(S). If not, an error occurs and the FUN1 instruction is disabled.
- (b) The FUN1(S) should be coded so that it may be executed only once in each 20-ms periodic scanning.
- (c) Do not code a 10-ms periodic scanning in this period. If coded, a congestion error will occur.


FUN2(S) (Execution of PID Operation)

	Function Execution		DE	R	ERR	SD	v	с		
	PID Opera				•	•	•	•		
Instruction format	FUN2(S)		N	lumb	er o	f st	eps			
TOTMAC	FONZ(5)				3	1				
I/O type	2. The WF agains specif Otherw	 S must not be an array variable. The WR area specified for S must be protected against unexpected power failures (by the specification of "Power-Off Protection"). Otherwise, the data in the WR area would be all cleared when the power is shut off. 								
	Words S	WX	WY	WR	WL	WM	TC		Constant	
				0						

Outline of FUN2(S) processing

(a) The FUN2(S) instruction determines whether or not the PID operation is to be executed according to the preset sampling time 12.

For example, when the preset sampling time 12 is 3 ms and the actual sampling time is 60 ms, PID operations are carried out at periodic scans 1, 4, and 7. At the other periodic scans (2, 3, 5, 6, 8, ...), PID operations are not carried out.

The FUN2(S) instruction turns on the PID Execution flag 59 of a process loop on which the PID operation will be performed.

For execution of PID operations on more than one process loop, see 3.4 "FUN1(S)".

- (b) The FUN2(S) instruction checks the contents of High Output Limit (17), Low Output Limit (18), and SV Bit Pattern (23) to MV Bit Pattern (25) parameters. If an error is detected, the "FUN2 Error" field (63) is set to "1" and the error code is set in the "Error Code 2". The FUN2 instruction is not held by this error. When no error is detected, the "FUN2 Error" field (63) is set to "0".
- (c) The PID operation is performed by the following expressions:

$$(55)$$
 D-FREI = 1

$$55$$
 D-FREI = 0

 $\begin{array}{l} \begin{array}{l} \text{Output} \\ \text{value} \end{array} = \frac{\textcircled{1}{3}K_{\bullet}}{100} \cdot X D + \frac{\textcircled{1}{3}K_{\bullet}}{100} \cdot \frac{X D}{\textcircled{1}T_{+}/T Z} + Y 1 \ (n-1) \end{array}$

where XD: Deviation (= Set value - Measured value) Kp: Proportional gain Tn/TZ: Differential delay constant TD/TZ: Differential constant Ti/TZ: Integral constant XD(n-1): Previous deviation Y1: Integral value expressed by $Y 1 = \frac{(3)K_{P}}{100} \cdot \frac{XD}{(4)T_{+}/TZ} + Y1 (n-1)$

> Yl(n-1): Previous integral value YDT1: Differential value

 $YDT 1 = \frac{10 T_{n} / TZ}{1 + 10 T_{n} / TZ} \{YDT 1 (n-1) + \frac{10 T_{n} / TZ}{10 T_{n} / TZ} \times \frac{10 K_{P}}{100} (XD - (n-1))\}$

YDT1(n-1): Previous differential value

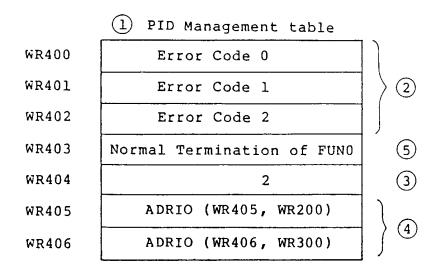
53 S flag = "1"

Output value = 19 INT

(54) R flag = "1"

Output value = 0

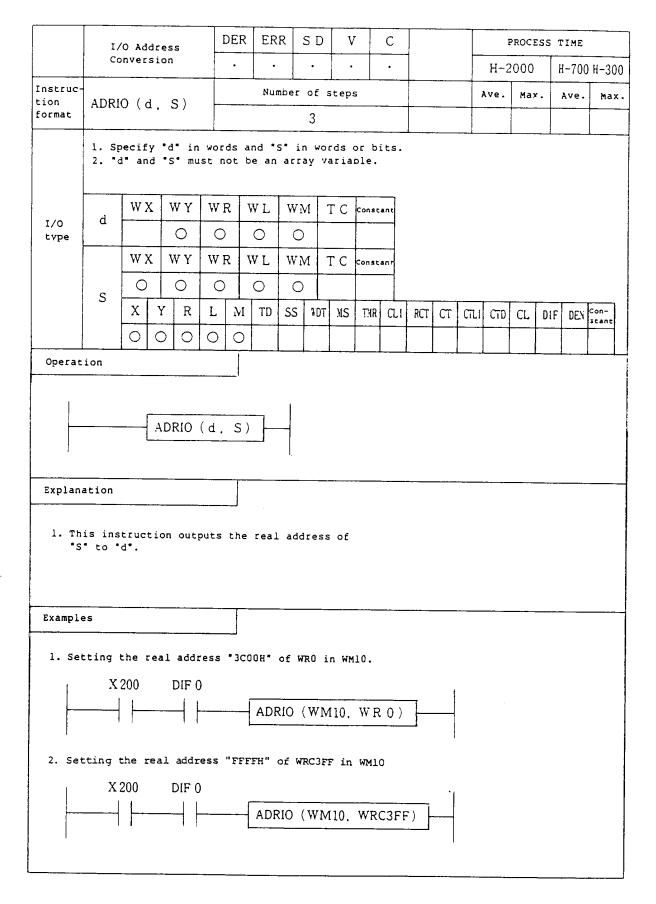
(d) The output value (obtained by (c)) is corrected by the high output limit (1) and the low output limit (18), as shown below.


Low output value 18 High output value 17 Output value The high output limit becomes an output value. Low output value 18 Output value High output value 17 The output value becomes an output value. Output value Low output value 18 High output value 17

The high output limit becomes an output value.

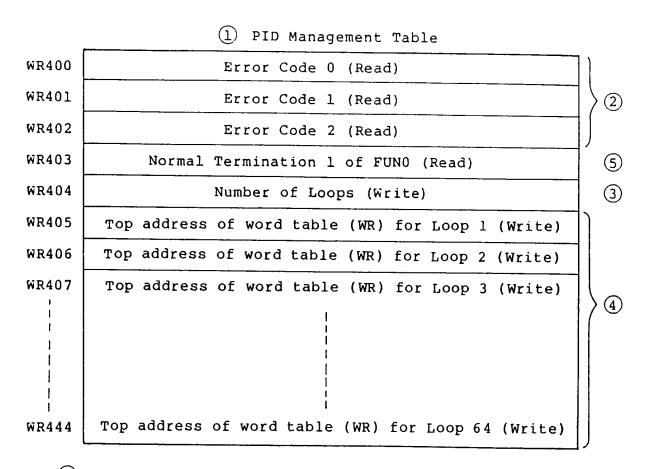
Low output value (18) High output value (17) No output value The error code is set in the "Error Code 2" field.

Programming notes


- (a) The WR number specified for "S" of the FUN2(S) must be equal to the WR number of the WR area on the PID Management table for a selected process loop. If not, an error occurs and the FUN2 instruction is disabled.
- (b) The FUN2(S) should be coded in 20-ms periodic scanning.
- (c) It is required to code all FUN2(S) that are set in the top numbers of the WR areas of the word table for process loops (4) (in the PID Management table).

In the above PID Management table, FUN2 (WR200) and FUN2 (WR300) are alternately executed once in each 20-ms periodic scanning.

(d) FUN1 and FUN2 instructions should be coded so that the FUN2 instruction may be executed after the FUN1 instruction is executed in a 20-ms periodic scanning.


ADRIO (I/O Address Conversion)

PID Management Table

Explanation

[Example] FUNO (WR400)

(1) PID Management Table

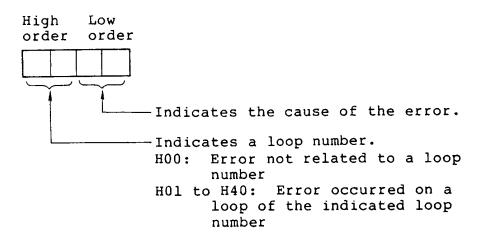
- (a) "S" of the FUNO(S) instruction should be the top WR number of the PID Management table.
- (b) The PID Management table consists of four parts: 2, 3, 4 and 5. The size of part 5 varies according to the number of loops. Part 5 must not exceed the end of the WR (see (c)). If part 5 exceeds the end of the WR, error code 0004 is written in the "Error Code 0" area.
- (c) The available range of the WR varies according to the type of a memory cassette installed in the CPU module.

RAM-04H,	RAM-08H:	WRO	to	WR3FF
RAM-16H:		WRO	to	WR43FF
RAM-48H:		WRO	to	WRC3FF
ROM-16H:		WRO	to	WR43FF

Note: (Write): Area in which the user can write data (by programming), from which the user can read data

- (2) Error Code 0, Error Code 1, and Error Code 2 (Read-only)
 - (a) Error code 0

An error code is set in this area when an error occurs in the execution of the FUNO instruction or FUN1 instruction (partially). While no error is detected, this area holds the preceding status.


(b) Error code 1

An error code is set in this area when an error occurs in the execution of the FUN1 instruction. While no error is detected, this area holds the preceding status.

(c) Error code 2

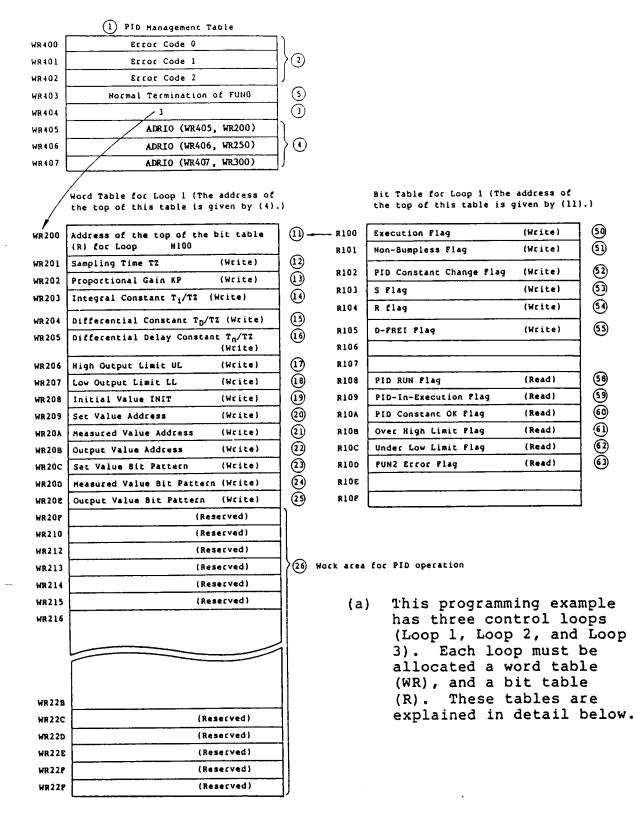
An error code is set in this area when an error occurs in the execution of the FUN2 instruction. While no error is detected, this area holds the preceding status.

 (d) An error code is expressed by four hexadecimal digits.

See 3.10 "Error Codes" for error codes set in the Error Code 0, Error Code 1, and Error Code 2 areas.

The loop number of H0l to H40 is set in the high-order "xx" of error codes in the error code list.

- 3 Number of Loops (Write)
 - (a) Set the number of loops used (1 to 64).


When "0" is set in this area, error code 0002 is set in the "Error Code 0" area and the PID control function is disabled (even when FUN1 and FUN2 instructions are already coded).

- (4) Top address of word table (WR) for Loop n (Write)
 - (a) One loop requires a WR of 48 words long for Input of PID constants and for internal calculation of the PID. Set the top address of the WR in this area by the address conversion instruction. The address must not exceed WRC3FF, (the end of the WR). If the address exceeds WRC3FF, error code xx05 is written in the Error Code 0 area. WRs of loops must not overlap each other.
 - (b) Specify WR addresses as many as the number of loops specified.

For example, when you write "5" in the "Number of Loops" area, specify the address of WR for loop 1 to the the address of WR for loop 5 (a total of five addresses).

See Section 3.6 for explanation of the ADRIO instruction.

- 5 Normal Termination of FUN0 (Read-only)
 - (a) Code 0001 is set in this area when the FUN0 instruction ends normally. When an error occurs in the execution of the FUN0 instruction, an error code is set in the Error Code 0 area.

(50)

()

(52)

9

9

(55)

- $\widehat{1}$ Address of the Top of the Bit Table for Loop (Write)
 - (a) One loop requires a bit table (R) of 16 bits long for control and monitor of the loop. Specify the bit number of the bit table (R) in the range of 0 to H7B0 by the ADRIO instruction. The bit number (address) must not exceed R7BF (the end of the bit table).

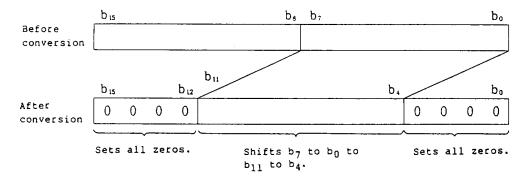
(12) to (19)

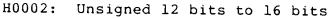
	Y	· · · · · · · · · · · · · · · · · · ·	
No.	Parameters	Specification	Remarks
12	Sampling Time TZ	<pre>1 to 200 ms (a multiple of 20 ms) (When the analog input output module is installed on the basic or expansion unit) 4 to 200 ms (a multiple of 20 ms) (when the analog input output module is installed on the remote I/O sub- station)</pre>	<pre>o The sampling time must be a multiple of a minimum set value. o The minimum set value is what is set in the Number of Loops area (3). (Example) Setting of sampling times (TZ) of 4 loops Loop 4 4 4 8 4 0* 3* 1 Loop 4 4 24 4 4 12 Loop 4 8 16 4 0* 48 3 Loop 4 8 16 4 0* 48 2 Loop 4 8 24 Ex. Ex. Ex. Ex. Ex. Ex. 1 2 3 4 5 6</pre>
13	Propor- tional Gain KP	-1000 - +1000	-10.00 to +10.00

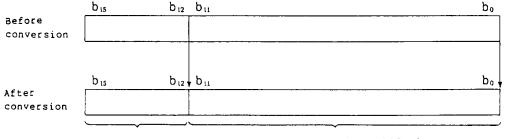
No.	Parameters	Specification	Remarks
14)	Integral Constant	1 - 32767	Integration time (T _i) Sampling time (TZ)
	Τ _i /TZ		Differential time (T _D) Sampling time (TZ)
			Differential delay time (T _n) Sampling time (TZ)
(15)	Dif- ferential Constant T _D /TZ		
(16)	Dif- ferential Delay Constant T _n /TZ		
17)	High Output Limit UL	-32767 - +32767	These values must satisfy the following condition:
18	Low Output Limit LL		LL \leq INIT \leq UL The UL and LL values can be
19	Initial Value INIT		given hysteresis by a user program.

- 20 Set Value Address (Write)
 - (a) This area sets the address of a word which stores a set value.

(Example) To set the address of WX500 in WR20A, code ADRIO (WR20A, WX500)

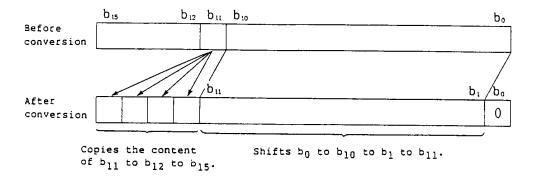

- (21) Measured Value Address (Write)
 - (a) This area sets the address of a word which stores the measured value.
- (22) Output Value Address (Write)
 - (a) This area sets the address of a word from which the result of a PID operation will be output.


(23)


Set Value Bit Pattern (Write)

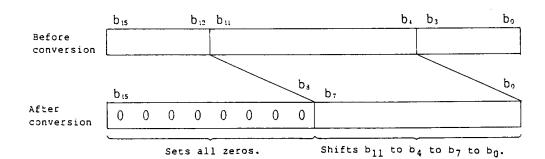
This area determines a method of converting a set value into 16-bit data for PID operation. Select and write one of H0001 to H0004 according to the conditions shown below. See Table 3.2 for bits patterns for analog input modules.

H0001: 8 bits to 16 bits



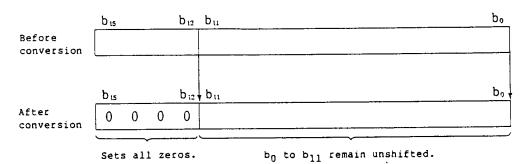
Sets all zeros. b₀

 b_0 to b_{11} remain unshifted.

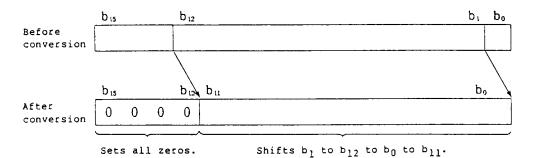

H0003: Signed 12 bits to 16 bits (Sign expansion)

H0004: No conversion

- (24) Measured Value Bit Pattern (Write)
 - (a) This area sets a method (H0001 to H0004) of converting data read from the Measured Value Address area (21) into 16-bit data. See Table 3.2 for bit patterns for analog input modules. See (23) "Set Value Bit Patterns" for the converting methods.
- (25) Output Value Bit Patterns (Write)
 - (a) The result of FUN2 processing or PID operation is converted according to the bit pattern set in this area and written in the Output Value Address area (22). See Table 3.2 for bit patterns for analog output modules.


Select and write one of H000l to H0004 in this area 25 according to the content of the Output Value Address area (Analog Output WY, WR, WL, or WM).

H0001: 18 bits to 8 bits


HFFF to H7FFF (before conversion) is converted to HFF. H8000 to HFFFF (before conversion) is converted to H0.

H0002: 16 bits to Unsigned 12 bits

HFFF to H7FFF (before conversion) is converted to HFF. H8000 to HFFFF (before conversion) is converted to H0.

H0003: Signed 16 bits to Signed 12 bits

HFFF to H7FFF (before conversion) is converted to H7FF. H8000 to HFFFF (before conversion) is converted to H80.

- H0004: No conversion
- Note: The contents of the areas 23 (Set Value Bit Pattern), 24 (Measured Value Bit Pattern), and 25 (Output Value Bit Pattern) vary according to the type of the analog I/O module that reads or writes the values.

Table 3.2 Analog I/O modules and bit patterns

Module	Туре	Specification	SV, PV, or MV	Bit pattern
Analog Input Module	XAGV08H	0 - 10 VDC, 8 bits	SV (Set value) and PV (Measured value)	H0001
	XAGC08H	4 - 20 mA DC, 8 bits	п	H0001
	XAGV12H	-10 - +10 VDC, 12 bits	19	н0003
	XAGC12H	4 - 20 mA DC, 12 bits	11	H0002
	XAGV121H	0 - 10 VDC, 12 bits	11	H0002
	XAGV122H	1 - 5 VDC, 12 bits	18	н0002
Analog Output Module	YAGV08H	0 - 10 VDC, 8 bits	MV (Output value)	H0001
Module	YAGC08H	4 - 20 mA DC, 8 bits	17	H0001
	YAGV12H	-10 - +10 VDC, 12 bits	11	ноооз
	YAGC12H	4 - 20 mA DC, 12 bits	10	H0002
	YAGV121H	0 - 10 VDC, 12 bits	11	H0002
	YAGV122H	1 - 5 VDC, 12 bits	*1	H0002
RTD Input Module	XRTDOlH	-50°C - 400°C, Signed 15 bits	SV (Set value) and PV (Measured value)	H0004

26

Work area for PID Operation (Reserved)

(a) The FUNO, FUN1, and FUN2 instructions use this area for PID operations. The user program is not allowed to use this area.

If the user program uses this area, the result of the PID operation will not be assured.

- (50) Execution Flag (Write)
 - (a) When the Execution flag turns on ("0" to "1"), the PID constants at the time are checked and the PID values are initialized. When the PID constants are all valid, the PID RUN flag 58 is turned on ("1").

When any PID constant is found invalid, the PID RUN flag 58 is turned off ("0"). The PID operation will not be performed.

- (b) The PID operation is performed while the Execution flag is on ("1").
- (c) When the PID RUN flag (58) is turned off ("1"), the PID operation ends and the output becomes 0.

(51) Non-Bumpless Flag (Write)

"Non-bumpless" operation is to store the PID result internally without stopping the PID operation when the S or R flag is turned on. Therefore, when the S or R flag is turned off, the output value abruptly changes according to the intermediate operation value.

Contrarily, in the Bumpless status, the PID operation is suppressed while the S or R flag is on. When the flag is turned on, the output value changes in sequence starting from the value at the time point. See 3.9.3 Timing diagram example 3.

- (a) When the Non-Bumpless flag is on, non-bumpless processing is performed.
- (b) When the Non-Bumpless flag is off, bumpless processing is performed.
- (52) PID Constant Change Flag (Write)
 - (a) When any PID constant (12) to 16) is changed, the PID Constant Change flag must be turned on. When this flag is turned on, the change of PID constants (12) to 16) is reflected on the result (previous value).
 - (b) When the change of the PID constants is completed, this flag must be set to off ("0").
 - (c) When any PID constant is not valid (when the "PID Constant OK Flag area 60 is "0"), the PID operation is performed with the previous PID constants.

Do not change the content of the flags ((58) to (63)) (for reference only). If changed, the result of the PID operation will not be assured.

53 S Flag (Write)

 (a) When the S flag is on ("1"), the output value is reset to the initial value. The output value is determined according to the relationship of the initial value (19), the the high output limit (17) and low output limit (18), as shown below.
Low output limit > High output limit No output
Low output limit ≦ Initial value ≦ High output limit The output value is the initial value ①9 .
Low output limit <u>く</u> High output limit <u>く</u> Initial value The output value is the high output limit 〔プ・
Initial value ≦ Low output limit ≦ High output limit The output value is the low output limit 〔8].
The S flag is given a higher precedence than the R flag.
R Flag (Write)
(a) When this flag is on ("1"), the output value is cleared to all zeros.
D-FREI Flag (Write)
(a) When this flag is on ("l"), the P, I, and D operations are performed.
(b) When this flag is off ("0"), the P and I operations are performed. (The differential operation (D) is not done.)
PID RUN Flag (Read-only)
(a) When detecting that the Execution flag 50 is on, the FUN1 instruction validity-checks the parameters 12 to 16 and 20 to 22 and sets the result in the PID RUN Flag area 58.
• PID RUN Flag = "1": Valid

54)

(55)

58)

.

The PID operation starts.

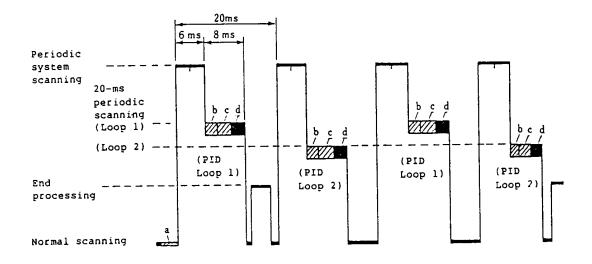
• PID RUN Flag = "0": Not Valid

The PID operation is suppressed. The error factor is set in the Error Code 1 area (2).

- (b) When detecting the on-to-off transition of the Execution flag 50 (while the PID RUN flag 58 is on), the FUN1 instruction turns off the PID RUN flag 58 and ends the PID operation.
- (59) PID-In-Execution Flag (Read-only)
 - (a) The FUN2 instruction turns on this flag of a loop when performing the PID operation on it and turns off the PID-In-Execution flags of the other loops.
- (60) PID Constant OK Flag (Read-only)
 - (a) When detecting that the PID Constant Change flag
 (52) is on, the FUN1 instruction validity-checks the PID constants (12) to (16) and sets the result in the PID Constant OK flag (60).
 - PID Constant OK Flag = "1": The PID constants are valid.
 - PID Constant OK Flag = "0": The PID constants are not valid.

The FUNC1 instruction performs the PID operation with the previous PID constants.

The error code is set in the Error Code 1 area (2).


- (61) Over High Limit Flag MV > UL (Read-only)
 - (a) When the output value calculated by the FUN2 instruction is greater than the high output limit UL (17), this flag is turned on ("1").
- (62) Under Low Limit Flag MV < LL (Read-only)
 - (a) When the output value calculated by the FUN2 instruction is less than the low output limit LL (12), this flag is turned on ("1").
- (63) FUN2 Error Flag (Read-only)
 - (a) When an error is found in the high output limit
 (17), the low output limit
 (18), or bit patterns
 (23) to
 (25), the FUN2 instruction turns on the
 FUN2 Error flag
 (63). Its error code is set in
 the Error Code 2 area
 (2). The PID operation is
 not suppressed by this error.

When no error is found in the execution of the FUN2 instruction, the FUN2 Error flag 63 remains off ("0") and the Error Code 2 area (2) remains blank.

Executions of PID Operation Instructions in the CPU

[Example 1] PID control on two loops whose sampling times are respectively 2 (a multiple of 20 ms)

Note: For legibility, this timing diagram combines two 10-ms system interrupts into one.

- a: FUNO processing
- b: FUN1 processing
- c: FUN2 processing
- d: Other periodic interrupt processing

Fig. 3.8.1 Management of execution of PID operation (2 loops)

[Example 2] PID control on the following three loops

 $\begin{cases} \text{Loop 1:} & \text{TZ} = 3 & (x \ 20 \ \text{ms}) \\ \text{Loop 2:} & \text{TZ} = 6 & (x \ 20 \ \text{ms}) \\ \text{Loop 1:} & \text{TZ} = 12 & (x \ 20 \ \text{ms}) \end{cases}$

Note: For legibility, this timing diagram combines two 10-ms system interrupts into one.

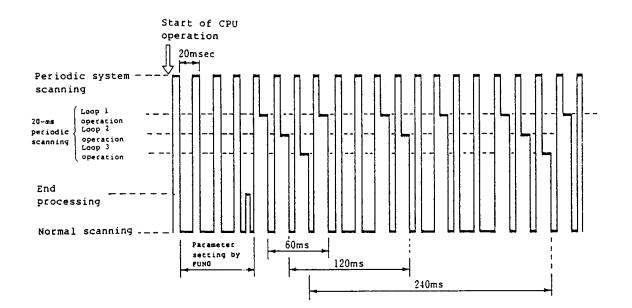
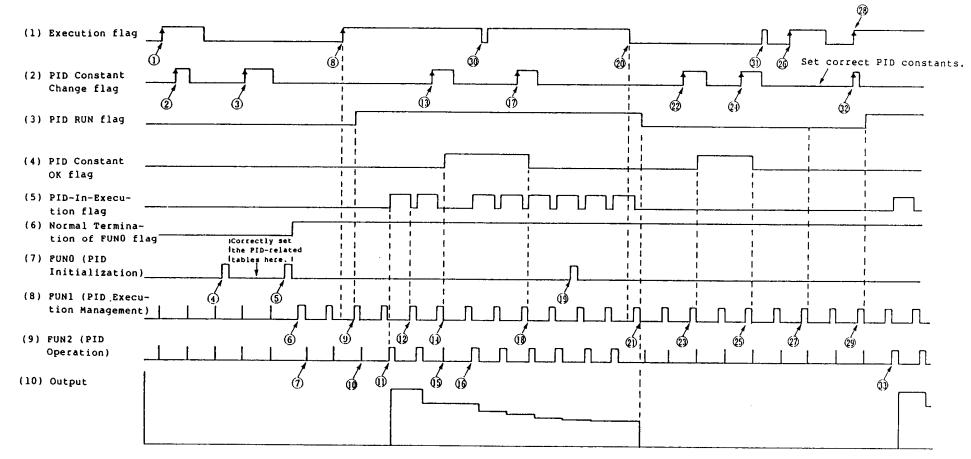



Fig. 3.8.2 Management of execution of PID operation (3 loops)

Timing Diagram

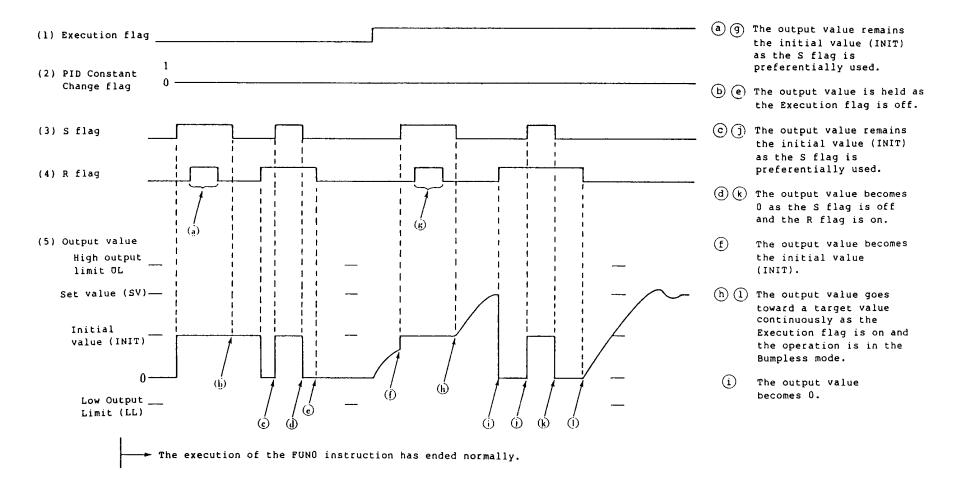
Timing diagram example 1

This example shows waveforms of flags (PID RUN, PID Constant OK, and PID-In-Execution) and instructions (FUNO, FUN1, and FUN2) at the on-to-off transition of both the Execution flag and the PID Constant Change flag for a loop.

[Explanation]

- (1), (2), (3) These off-to-on transitions are ignored as the FUNO instruction is not executed normally.
- (4) As the FUNO instruction finds an error in the PID-related table, the FUN1 instruction is disabled.
- (5) The FUNO instruction has ended normally and
- 6 FUN1 processing starts.
- The FUN2 instruction does not perform the PID operation as the Execution flag is off ("0").
- (8) The FUN1 instruction (9) detects the off-to-on transition of the Execution flag and validity-checks PID constants. As the PID constants are valid, the PID RUN flag is turned on.
- The PID operation of the FUN2 instruction starts at
 (1) (FUN2) as the first scanning is not executed.
- (1) The PID-In-Execution flag is turned on before the PID operation of the FUN2.
- (1) The FUNL instruction turns off the PID-In-Execution flag.
- At the off-to-on transition of the PID Constant Change flag,
- (14) The FUN1 turns on the PID Constant OK flag (as the PID constant check passed) and changes the PID constants.
- (15) The FUN2 instruction does not perform the PID operation.
- (16) The PID operation starts with the new PID constants.
- At the off-to-on transition of the PID Constant Change flag,
- (18) The FUNL turns off the PID Constant OK flag (as the FUNL instruction detects an error in the PID constants). The PID Constant flag remains unchanged.
- (19) Another FUNO instruction is ignored when it is executed while the PID operation is executed.
- 20 As the on-to-off transition of the Execution flag is detected by the FUNL instruction (21),
- (21) the PID RUN flag is turned off and the output becomes 0.

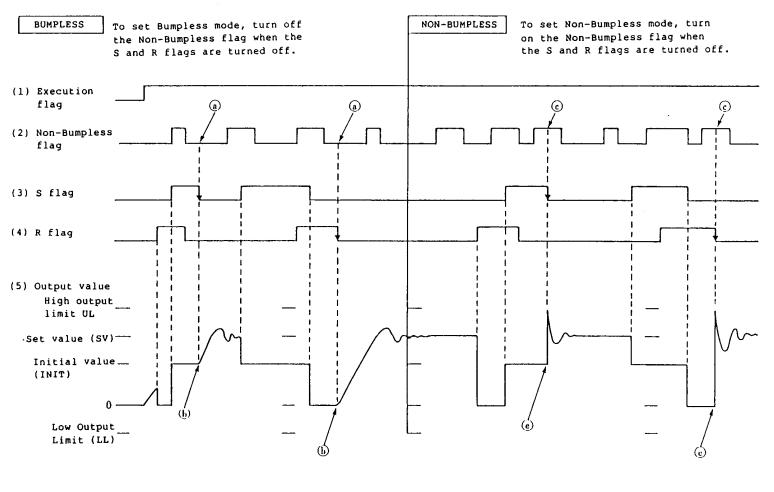
- As the on-to-off transition of the PID Constant Change flag is detected by the FUN1 instruction (23) while the Execution flag is off, the PID constants are validity-checked. As they are valid, the instruction changes the PID constants and turns on the PID Constant OK flag.
- As the on-to-off transition of the PID Constant Change flag is detected by the FUN1 instruction (25) while the Execution flag is off, the PID constants are validity-checked. As they are not valid, the instruction turns on the PID Constant OK flag.
- 20 The off-to-on transition of the Execution flag
- (2) The FUN1 instruction detects this transition and checks the PID constants. As they have an error, the PID RUN flag is turned off.
- 29 The FUN1 instruction detects the simultaneous off-to-on transition of the Execution flag
 28 and the PID Constant Change flag
 32 . The off-to-on transition of the PID Constant Change flag is ignored.


As the PID constants are valid, the FUN1 turns on the PID RUN flag. The PID operation restarts from the FUN2 instruction (33).

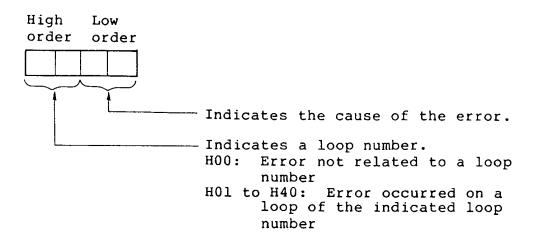
30, 31

The on-to-off transitions of the Execution flag are ignored if they are not detected in normal periodic scanning. Timing diagram example 2

This example shows timing of the operations of the S and R flags (in Bumpless mode).


S flag: Resets the output value to the initial value. R flag: Resets the output value to all zeros.

- 254 -


Timing diagram example 3

This example shows timing of bumpless and non-bumpless operations.

(b) When the S flag and the R flag turn off, the output value goes toward a preset value continuously. (e) When the S flag and the R flag turn off, the output value goes toward a preset value abruptly. Error Codes

The error code is expressed by four hexadecimal digits.

The loop number of H01 to H40 is set in the high-order "xx" of error codes in the error code list.

The circled numbers in this table are those used in the PID management table (3.7.1), and word and bit tables for loops (3.7.2).

Error codes set in the Error Code 0 area

The Error Code 0 area sets the code of an error which is detected in the execution of the FUN0 or FUN1 (partially) instruction. When no error is detected in the execution of the instruction, this area holds the previous status.

Error Code 0 Area (1 of 3)			
Error code	Error cause	Action to repair	Remarks
0001	Although a FUN0 instruction has ended normally, but another FUN0 instruction is issued for execution.	Do not try to execute an FUNO instruction again after it ended normally.	The Normal Termination of FUNO area (5) holds the previous value.
0002	The loop number is 0.	Specify a value of l to 64 as the number of loops (in the Number of Loops area (3)).	
0003	The loop number is greater than 64	Specify a value of l to 64 as the number of loops (in the Number of Loops area (3)).	
0004	The PID management table exceeds the I/O limit.	Correct the address of the top of the PID management table or the number of loops so that the PID management table is within the I/O limit.	The size of the PI management table i variable. When th number of loops (3 exceeds the I/O limit, the Normal termination of FUN area (5) holds the previous value.
xx05	The word table of loop xx exceeds the I/O I/O limit.	Specify the correct address of the word table (WR) for the loop.	The word table is 48 words long.
xx06	The bit table of loop xx exceeds the I/O limit.	Specify the correct address of the bit table (R) for the loop.	The bit table is 16 bits long.

Error Code O Area (2 of 3)			
Error code	Error cause	Action to repair	Remarks
xx07	The high output value ① of loop xx is invalid.	The high output value (7) should be in the range of -32767 to 32767.	
xx08	The low output value 18 of loop xx is invalid.	The low output value 18 should be in the range of -32767 to 32767.	
xx09	The initial value ① of loop xx is invalid.	The initial value (19) should be in the range of -32767 to 32767.	
XXOA	The high output limit (1), the low output limit (18), and the initial value (19) for loop xx are related improperly.	Correct the high output limit (17), the low output limit (18), and the initial value (19) for loop so that they may be related normally. Low output limit Initial value High output limit	
xx0B	The set value bit pattern 23 for loop xx is not valid.	Specify a value ranging from 1 to 4 in the SV Bit Pattern area 23.	
xx0C	The measured value bit pattern 24 for loop xx is not valid.	Specify a value ranging from 1 to 4 in the PV Bit Pattern area 24.	
xx0D	The output value bit pattern (25) for loop xx is not valid.	Specify a value ranging from 1 to 4 in the MV Bit Pattern area 25.	
0020 (Note)	FUN1 was executed although FUN0 did not end normally.	Program so that FUN1 may be executed after FUN0 ends normally.	This error code is set in the Error Code 0 area specified by "S" of FUN1(S).

Error Code 0 Area (3 of 3)			
Error code	Error cause	Action to repair	Remarks
0021 (Note)	The content of "S" of FUN1(S) is not equal to "S" of FUN0(S) (with respect to the PID manage- ment table).	Specify a correct WR address so that the content of "S" of FUN1(S) may be equal to "S" of FUN0(S).	This error code is set in the Error Code 0 area specified by "S" of FUN1(S).

Note: Error codes 0020 and 0021 are written over an error code (0001 to xx0D, if any) which was already set in the Error Code 0 area. Make sure that FUN0 has been executed normally before FUN1 is executed. See Chapter 4 for programming examples.

Error codes set in the Error Code 1 area

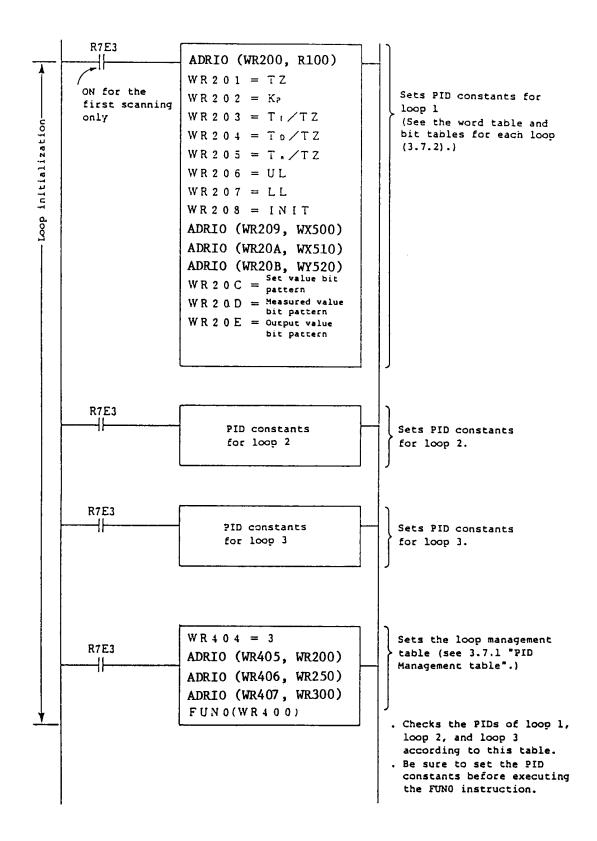
The Error Code 0 area sets the code of an error which is detected in the execution of the FUN1 instruction. When no error is detected in the execution of the instruction, this area holds the previous status.

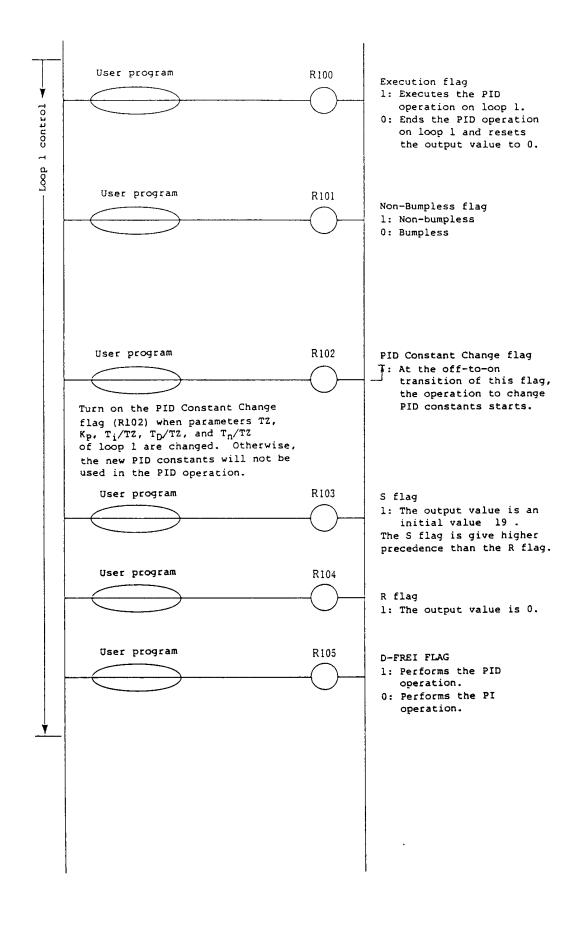
Error Code 1 Area (1 of 2)			
Error code	Error cause	Action to repair	Remarks
0020	FUNl was executed although FUN0 did not end normally.	Program so that FUN1 may be executed after FUN0 ends normally.	This error code is set in the Error Code 0 area specified by "S" of FUN1(S).
0021	The content of "S" of FUN1(S) is not equal to "S" of FUN0(S) (with respect to the PID manage- ment table).	Specify a correct WR address so that the content of "S" of FUN1(S) may be equal to "S" of FUN0(S).	This error code is set in the Error Code 0 area specified by "S" of FUN1(S).
xx22	The set value address 20 for loop xx is not valid.	Specify a correct set value address 20 by the ADRIO instruction.	This error can occur at the off-to-on transition of the Execution flag.
xx23	The measured value address 21 for loop xx is not valid.	Specify a correct measured value address (21) by the ADRIO instruction.	
xx24	The output value address 22 for loop xx is not valid.	Specify a correct output value address (2) by the ADRIO instruction.	
xx 25	The sampling time of loop xx is no valid.	Specify a correct sampling time (1 to 200).	These errors can occur at the off-to-on
xx26	The sampling time (12) of loop xx is not a multiple of the number of loops (3).	The sampling time (12) should be a multiple of the number of loops (3).	transition of the Execution flag or the PID Constant Change flag.

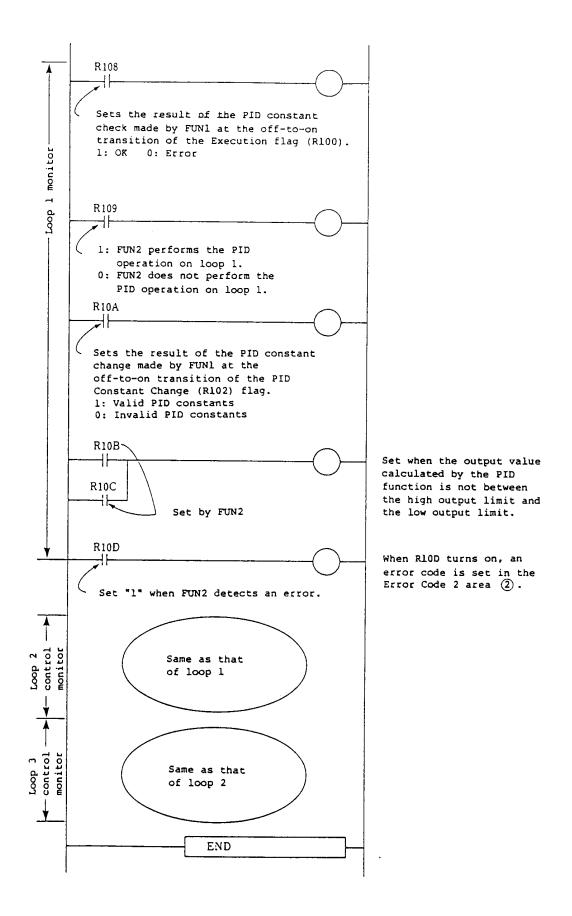
Error Code 1 Area (2 of 2)				
Error code	Error cause	Action to repair	Remarks	
xx27	The proportional gain (13) of loop xx is not valid.	Specify a correct proportional gain (-1000 to 1000).		
xx28	The integral constant (14) of loop xx is not valid.	Specify a correct integral constant (1 to 32767).		
xx29	The differential constant (15) of loop xx is not valid.	Specify a correct differential constant (1 to 32767).		
XX2A	The differential delay constant 16 of loop xx is not valid.	Specify a correct differential delay constant (1 to 32767).		
xx30	The low output limit (18) of loop xx is greater than the high output limit (1) of loop xx.	The low output limit (18) of loop xx must be equal to or less than the high output limit (17) of loop xx.	This error can occur when the S flag 53 turns on while the PID RUN flag 58 is off.	
xx31	The output value address 22 of loop xx is not valid.	Specify a correct output value address 22 by the ADRIO instruction.	This error can occur when the S flag 53 or R flag 54 turns on while the PID RUN flag 58 is off.	
xx32	The output value bit pattern 25 of loop xx is not valid.	Specify a correct output value bit pattern 29 (l to 4).	flag (58) is off.	

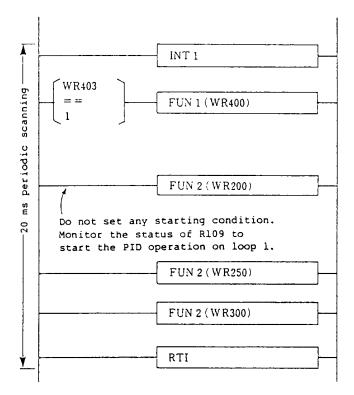
.

Error codes set in the Error Code 2 area


The Error Code 2 area sets the code of an error which is detected in the execution of the FUN2 instruction. When no error is detected in the execution of the instruction, this area holds the previous status.

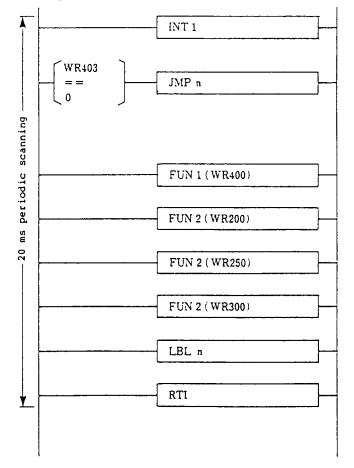

	Error Code 2 Area				
Error code	Error cause	Action to repair	Remarks		
xx41	The set value bit pattern 23 for loop xx is not valid.	Specify a value ranging from 1 to 4 in the SV Bit Pattern area 23.	When the specified bit pattern is not valid, the FUN2 instruction continues		
xx42	The measured value bit pattern 24 for loop xx is not valid.	Specify a value ranging from 1 to 4 in the PV Bit Pattern area 24.	processing with "4 NO CONVERSION".		
xx43	The output value bit pattern (25) for loop xx is not valid.	Specify a value ranging from 1 to 4 in the MV Bit Pattern area 25.			
xx44	The low output limit (18) of loop xx is greater than the high output limit (17) of loop xx.	The low output limit (18) of loop xx must be equal to or less than the high output limit (17) of loop xx.	When this error occurs, FUN2 processing continues but the result is not output.		


Programming Examples


Programming Example 1

This programming example is to make the CPU module to control three process loops. In this programming example, the PID constants are changed each time the CPU starts to run. To store the forcibly-changed PID constants, see Section 4.2.

Start of 20 ms periodic scanning


Code so that FUN1 (WR400) is executed after the execution of FUN0 ends normally (when WR403 = "1"). With this coding, the Error Code 0 area holds the error code when FUN0 detects an error.

Performs the PID operation on loop 1.

Performs the PID operation on loop 2.

Performs the PID operation on loop 3.

The above programming for 20 ms-periodic scanning can be replaced by the following:

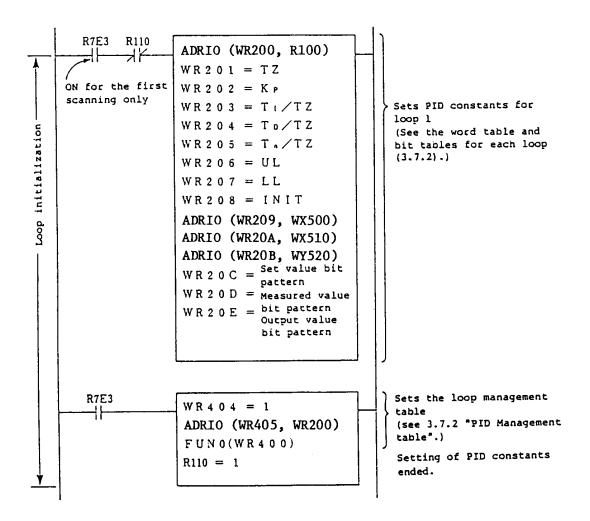
Start of 20 ms periodic scanning

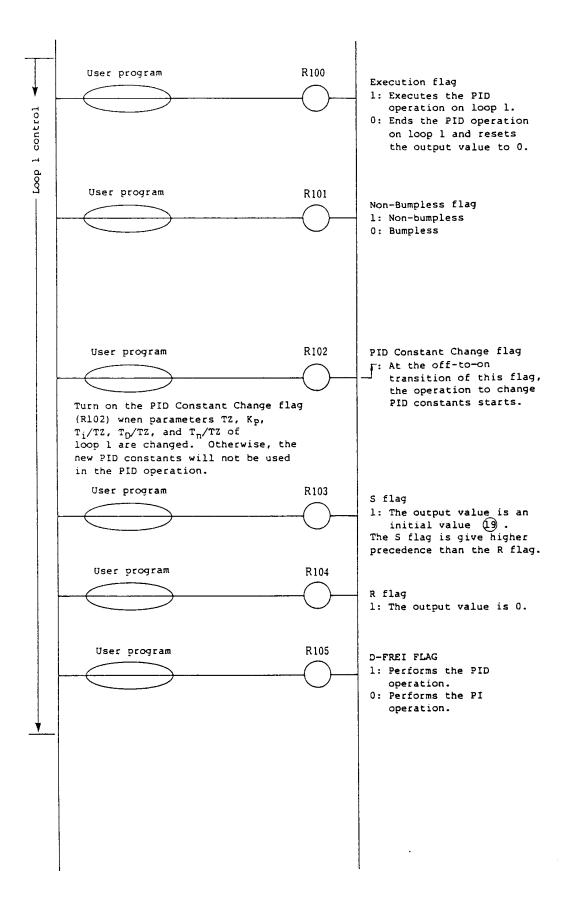
Jump to LBLn when the execution of FUNO abends. When the execution of FUNO ends normally, the succeeding instruction is executed. With this coding, the Error Code 0 area holds the error code when FUNO detects an error.

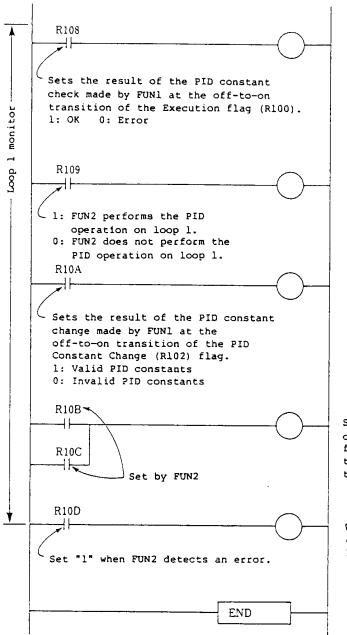
Determines the loop number to be executed by this periodic scanning.

Performs the PID operation on loop 1.

Performs the PID operation on loop 2.

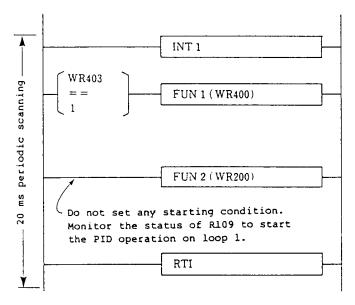

Performs the PID operation on loop 3.


Control jumps here when the execution of FUN0 abends.

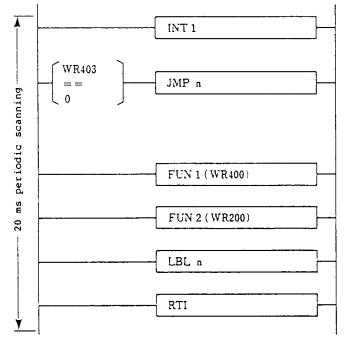

Programming Example 2

This programming example is to make the CPU module to control a single process loops. In this programming example, the PID constants are written only once. The PID constants changed in the execution of an instruction are held until they are forcibly changed.

For this purpose, "Power-off protection" must be specified for the PID management table (WR400 to WR405), the word table for loop 1 (WR200 to WR22F), and Rll0 (PID Constant Setting Ended).



Set when the output value calculated by the PID function is not between the high output limit and the low output limit.


When R10D turns on, an error code is set in the Error Code 2 area (2).

Start of 20 ms periodic scanning

Code so that FUN1 (WR400) is executed after the execution of FUN0 ends normally (when WR403 = "1"). With this coding, the Error Code 0 area holds the error code when FUN0 detects an error. Performs the PID operation on loop 1.

The above programming for 20 ms-periodic scanning can be replaced by the following:

Start of 20 ms periodic scanning

Jump to LBLn when the execution of FUNO abends. When the execution of FUNO ends normally, the succeeding instruction is executed. With this coding, the Error Code 0 area holds the error code when FUNO detects an error. Determines the loop number to be executed by this periodic scanning.

Performs the PID operation on loop 1.

Control jumps here when the execution of FUN0 abends.